論文の概要: Generating Hierarchical Explanations on Text Classification Without
Connecting Rules
- arxiv url: http://arxiv.org/abs/2210.13270v1
- Date: Mon, 24 Oct 2022 14:11:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 14:11:47.556071
- Title: Generating Hierarchical Explanations on Text Classification Without
Connecting Rules
- Title(参考訳): 接続規則のないテキスト分類における階層的説明の生成
- Authors: Yiming Ju, Yuanzhe Zhang, Kang Liu, Jun Zhao
- Abstract要約: 我々は、接続ルールが、モデル決定プロセスを忠実に反映する能力を損なう可能性があると主張している。
接続ルールを使わずに階層的説明を生成することを提案し,階層的クラスタを生成するためのフレームワークを提案する。
- 参考スコア(独自算出の注目度): 14.624434065904232
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The opaqueness of deep NLP models has motivated the development of methods
for interpreting how deep models predict. Recently, work has introduced
hierarchical attribution, which produces a hierarchical clustering of words,
along with an attribution score for each cluster. However, existing work on
hierarchical attribution all follows the connecting rule, limiting the cluster
to a continuous span in the input text. We argue that the connecting rule as an
additional prior may undermine the ability to reflect the model decision
process faithfully. To this end, we propose to generate hierarchical
explanations without the connecting rule and introduce a framework for
generating hierarchical clusters. Experimental results and further analysis
show the effectiveness of the proposed method in providing high-quality
explanations for reflecting model predicting process.
- Abstract(参考訳): 深層nlpモデルの不透明性は、深層モデルがどのように予測するかを解釈する手法の開発の動機となった。
近年,単語の階層的クラスタリングを実現する階層的アトリビューションと,各クラスタに対するアトリビューションスコアを導入している。
しかし、階層的属性に関する既存の研究はすべて接続規則に従っており、クラスタは入力テキストの連続スパンに制限される。
我々は、追加の事前として接続規則がモデル決定プロセスを忠実に反映する能力を損なう可能性があると主張する。
そこで本研究では,連結規則を伴わずに階層的説明を生成し,階層的クラスタを生成するフレームワークを提案する。
実験結果とさらなる解析により,モデル予測過程を反映する高品質な説明を提供する上で,提案手法の有効性が示された。
関連論文リスト
- From Logits to Hierarchies: Hierarchical Clustering made Simple [16.132657141993548]
事前訓練された非階層クラスタリングモデル上に実装された軽量なプロシージャは、階層クラスタリングに特化して設計されたモデルより優れていることを示す。
提案手法は,微調整を必要とせず,ログを出力する事前学習クラスタリングモデルに適用可能である。
論文 参考訳(メタデータ) (2024-10-10T12:27:45Z) - NeurCAM: Interpretable Neural Clustering via Additive Models [3.4437947384641037]
解釈可能なクラスタリングアルゴリズムは、取得したグループを説明しながら、類似したデータポイントをグループ化する。
本稿では、解釈可能なクラスタリング問題に対する新しいアプローチであるNeurCAM(Neur Clustering Additive Model)を紹介する。
本手法は,テキストデータのクラスタリングにおいて,他の解釈可能なクラスタリング手法よりも優れている。
論文 参考訳(メタデータ) (2024-08-23T20:32:57Z) - Hierarchical Indexing for Retrieval-Augmented Opinion Summarization [60.5923941324953]
本稿では,抽出アプローチの帰属性と拡張性と,大規模言語モデル(LLM)の一貫性と拡散性を組み合わせた,教師なし抽象的意見要約手法を提案する。
我々の方法であるHIROは、意味的に整理された離散的な階層を通して文を経路にマッピングするインデックス構造を学習する。
推測時にインデックスを投入し、入力レビューから人気意見を含む文群を識別し、検索する。
論文 参考訳(メタデータ) (2024-03-01T10:38:07Z) - Causal Unsupervised Semantic Segmentation [60.178274138753174]
教師なしセマンティックセグメンテーションは、人間のラベル付きアノテーションなしで高品質なセマンティックセマンティックセグメンテーションを実現することを目的としている。
本稿では、因果推論からの洞察を活用する新しいフレームワークCAUSE(CAusal Unsupervised Semantic sEgmentation)を提案する。
論文 参考訳(メタデータ) (2023-10-11T10:54:44Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
本稿では,階層構造の回復に着目した凝集クラスタリングアルゴリズムの新しい視点を提案する。
クラスタを最大平均点積でマージし、例えば最小距離やクラスタ内分散でマージしないような、標準的なアルゴリズムの単純な変種を推奨する。
このアルゴリズムにより得られた木は、汎用確率的グラフィカルモデルの下で、データ中の生成的階層構造をボナフェイド推定することを示した。
論文 参考訳(メタデータ) (2023-05-24T11:05:12Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
本稿では, PLM を用いた自己回帰的手法を用いて, モデル構造を行動列として記述する。
我々のアプローチは、私たちが見てきた全ての構造化予測タスクにおいて、新しい最先端を実現する。
論文 参考訳(メタデータ) (2022-10-26T13:27:26Z) - A Top-down Supervised Learning Approach to Hierarchical Multi-label
Classification in Networks [0.21485350418225244]
本稿では,階層型マルチラベル分類(HMC)に対する一般的な予測モデルを提案する。
クラスごとの局所分類器を構築することで教師あり学習により階層的マルチラベル分類に対処するトップダウン分類アプローチに基づいている。
本モデルでは, イネOryza sativa Japonicaの遺伝子機能の予測について事例研究を行った。
論文 参考訳(メタデータ) (2022-03-23T17:29:17Z) - Hierarchical Conditional End-to-End ASR with CTC and Multi-Granular
Subword Units [19.668440671541546]
エンドツーエンドの自動音声認識では、単語レベルのシーケンスを認識するのに適した表現を暗黙的に学習することが期待される。
接続型時間分類(CTC)に基づく階層型条件付きモデルを提案する。
LibriSpeech-100h, 960h, TEDLium2の実験結果から, 提案モデルが標準CTCモデルよりも改良されていることが示された。
論文 参考訳(メタデータ) (2021-10-08T13:15:58Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
データの局所構造とグローバル構造の両方を保存するためのグラフ学習フレームワークを提案する。
本手法は, サンプルの自己表現性を利用して, 局所構造を尊重するために, 大域的構造と適応的隣接アプローチを捉える。
我々のモデルは、ある条件下でのカーネルk平均法とk平均法の組合せと等価である。
論文 参考訳(メタデータ) (2020-08-31T08:41:20Z) - Hierarchical Correlation Clustering and Tree Preserving Embedding [3.821323038670061]
本稿では,よく知られた相関クラスタリングを拡張する階層的相関クラスタリング手法を提案する。
本稿では,このような階層的相関クラスタリングを用いた教師なし表現学習について検討する。
論文 参考訳(メタデータ) (2020-02-18T17:44:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。