Emergent Cooperation under Uncertain Incentive Alignment
- URL: http://arxiv.org/abs/2401.12646v1
- Date: Tue, 23 Jan 2024 10:55:54 GMT
- Title: Emergent Cooperation under Uncertain Incentive Alignment
- Authors: Nicole Orzan, Erman Acar, Davide Grossi, Roxana R\u{a}dulescu
- Abstract summary: We study how cooperation can arise among reinforcement learning agents in scenarios characterised by infrequent encounters.
We study the effects of mechanisms, such as reputation and intrinsic rewards, that have been proposed in the literature to foster cooperation in mixed-motives environments.
- Score: 7.906156032228933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the emergence of cooperation in systems of computational agents
is crucial for the development of effective cooperative AI. Interaction among
individuals in real-world settings are often sparse and occur within a broad
spectrum of incentives, which often are only partially known. In this work, we
explore how cooperation can arise among reinforcement learning agents in
scenarios characterised by infrequent encounters, and where agents face
uncertainty about the alignment of their incentives with those of others. To do
so, we train the agents under a wide spectrum of environments ranging from
fully competitive, to fully cooperative, to mixed-motives. Under this type of
uncertainty we study the effects of mechanisms, such as reputation and
intrinsic rewards, that have been proposed in the literature to foster
cooperation in mixed-motives environments. Our findings show that uncertainty
substantially lowers the agents' ability to engage in cooperative behaviour,
when that would be the best course of action. In this scenario, the use of
effective reputation mechanisms and intrinsic rewards boosts the agents'
capability to act nearly-optimally in cooperative environments, while greatly
enhancing cooperation in mixed-motive environments as well.
Related papers
- Learning to Balance Altruism and Self-interest Based on Empathy in Mixed-Motive Games [47.8980880888222]
Multi-agent scenarios often involve mixed motives, demanding altruistic agents capable of self-protection against potential exploitation.
We propose LASE Learning to balance Altruism and Self-interest based on Empathy.
LASE allocates a portion of its rewards to co-players as gifts, with this allocation adapting dynamically based on the social relationship.
arXiv Detail & Related papers (2024-10-10T12:30:56Z) - Cognitive Insights and Stable Coalition Matching for Fostering Multi-Agent Cooperation [6.536780912510439]
We propose a novel matching coalition mechanism that leverages the strengths of agents with different ToM levels.
Our work demonstrates the potential of leveraging ToM to create more sophisticated and human-like coordination strategies.
arXiv Detail & Related papers (2024-05-28T10:59:33Z) - Situation-Dependent Causal Influence-Based Cooperative Multi-agent
Reinforcement Learning [18.054709749075194]
We propose a novel MARL algorithm named Situation-Dependent Causal Influence-Based Cooperative Multi-agent Reinforcement Learning (SCIC)
Our approach aims to detect inter-agent causal influences in specific situations based on the criterion using causal intervention and conditional mutual information.
The resulting update links coordinated exploration and intrinsic reward distribution, which enhance overall collaboration and performance.
arXiv Detail & Related papers (2023-12-15T05:09:32Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
We propose a multi-agent framework framework that can collaboratively adjust its composition as a greater-than-the-sum-of-its-parts system.
Our experiments demonstrate that framework framework can effectively deploy multi-agent groups that outperform a single agent.
In view of these behaviors, we discuss some possible strategies to leverage positive ones and mitigate negative ones for improving the collaborative potential of multi-agent groups.
arXiv Detail & Related papers (2023-08-21T16:47:11Z) - Investigating the Impact of Direct Punishment on the Emergence of Cooperation in Multi-Agent Reinforcement Learning Systems [2.4555276449137042]
Problems of cooperation are omnipresent within human society.
As the use of AI becomes more pervasive throughout society, the need for socially intelligent agents is becoming increasingly evident.
This paper presents a comprehensive analysis and evaluation of the behaviors and learning dynamics associated with direct punishment, third-party punishment, partner selection, and reputation.
arXiv Detail & Related papers (2023-01-19T19:33:54Z) - The art of compensation: how hybrid teams solve collective risk dilemmas [6.081979963786028]
We study the evolutionary dynamics of cooperation in a hybrid population made of both adaptive and fixed-behavior agents.
We show how the first learn to adapt their behavior to compensate for the behavior of the latter.
arXiv Detail & Related papers (2022-05-13T13:23:42Z) - Normative Disagreement as a Challenge for Cooperative AI [56.34005280792013]
We argue that typical cooperation-inducing learning algorithms fail to cooperate in bargaining problems.
We develop a class of norm-adaptive policies and show in experiments that these significantly increase cooperation.
arXiv Detail & Related papers (2021-11-27T11:37:42Z) - Joint Attention for Multi-Agent Coordination and Social Learning [108.31232213078597]
We show that joint attention can be useful as a mechanism for improving multi-agent coordination and social learning.
Joint attention leads to higher performance than a competitive centralized critic baseline across multiple environments.
Taken together, these findings suggest that joint attention may be a useful inductive bias for multi-agent learning.
arXiv Detail & Related papers (2021-04-15T20:14:19Z) - Balancing Rational and Other-Regarding Preferences in
Cooperative-Competitive Environments [4.705291741591329]
Mixed environments are notorious for the conflicts of selfish and social interests.
We propose BAROCCO to balance individual and social incentives.
Our meta-algorithm is compatible with both Q-learning and Actor-Critic frameworks.
arXiv Detail & Related papers (2021-02-24T14:35:32Z) - Learning to Incentivize Other Learning Agents [73.03133692589532]
We show how to equip RL agents with the ability to give rewards directly to other agents, using a learned incentive function.
Such agents significantly outperform standard RL and opponent-shaping agents in challenging general-sum Markov games.
Our work points toward more opportunities and challenges along the path to ensure the common good in a multi-agent future.
arXiv Detail & Related papers (2020-06-10T20:12:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.