Understanding Human Activity with Uncertainty Measure for Novelty in Graph Convolutional Networks
- URL: http://arxiv.org/abs/2410.07917v1
- Date: Thu, 10 Oct 2024 13:44:18 GMT
- Title: Understanding Human Activity with Uncertainty Measure for Novelty in Graph Convolutional Networks
- Authors: Hao Xing, Darius Burschka,
- Abstract summary: We introduce the Temporal Fusion Graph Convolutional Network.
It aims to rectify the inadequate boundary estimation of individual actions within an activity stream.
It also mitigates the issue of over-segmentation in the temporal dimension.
- Score: 2.223052975765005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding human activity is a crucial aspect of developing intelligent robots, particularly in the domain of human-robot collaboration. Nevertheless, existing systems encounter challenges such as over-segmentation, attributed to errors in the up-sampling process of the decoder. In response, we introduce a promising solution: the Temporal Fusion Graph Convolutional Network. This innovative approach aims to rectify the inadequate boundary estimation of individual actions within an activity stream and mitigate the issue of over-segmentation in the temporal dimension. Moreover, systems leveraging human activity recognition frameworks for decision-making necessitate more than just the identification of actions. They require a confidence value indicative of the certainty regarding the correspondence between observations and training examples. This is crucial to prevent overly confident responses to unforeseen scenarios that were not part of the training data and may have resulted in mismatches due to weak similarity measures within the system. To address this, we propose the incorporation of a Spectral Normalized Residual connection aimed at enhancing efficient estimation of novelty in observations. This innovative approach ensures the preservation of input distance within the feature space by imposing constraints on the maximum gradients of weight updates. By limiting these gradients, we promote a more robust handling of novel situations, thereby mitigating the risks associated with overconfidence. Our methodology involves the use of a Gaussian process to quantify the distance in feature space.
Related papers
- UAHOI: Uncertainty-aware Robust Interaction Learning for HOI Detection [18.25576487115016]
This paper focuses on Human-Object Interaction (HOI) detection.
It addresses the challenge of identifying and understanding the interactions between humans and objects within a given image or video frame.
We propose a novel approach textscUAHOI, Uncertainty-aware Robust Human-Object Interaction Learning.
arXiv Detail & Related papers (2024-08-14T10:06:39Z) - Conformalized Teleoperation: Confidently Mapping Human Inputs to High-Dimensional Robot Actions [4.855534476454559]
We learn a mapping from low-dimensional human inputs to high-dimensional robot actions.
Our key idea is to adapt the assistive map at training time to additionally estimate high-dimensional action quantiles.
We propose an uncertainty-interval-based mechanism for detecting high-uncertainty user inputs and robot states.
arXiv Detail & Related papers (2024-06-11T23:16:46Z) - Data-driven Force Observer for Human-Robot Interaction with Series Elastic Actuators using Gaussian Processes [4.229902091180109]
In this work, we learn the unknown dynamics components using Gaussian process (GP) regression.
We derive guaranteed estimation error bounds, thus, facilitating the use in safety-critical applications.
We demonstrate the effectiveness of the proposed approach experimentally in a human-exoskeleton interaction scenario.
arXiv Detail & Related papers (2024-05-14T15:51:52Z) - Uncertainty-boosted Robust Video Activity Anticipation [72.14155465769201]
Video activity anticipation aims to predict what will happen in the future, embracing a broad application prospect ranging from robot vision to autonomous driving.
Despite the recent progress, the data uncertainty issue, reflected as the content evolution process and dynamic correlation in event labels, has been somehow ignored.
We propose an uncertainty-boosted robust video activity anticipation framework, which generates uncertainty values to indicate the credibility of the anticipation results.
arXiv Detail & Related papers (2024-04-29T12:31:38Z) - Feature Interaction Aware Automated Data Representation Transformation [27.26916497306978]
We develop a hierarchical reinforcement learning structure with cascading Markov Decision Processes to automate feature and operation selection.
We reward agents based on the interaction strength between selected features, resulting in intelligent and efficient exploration of the feature space that emulates human decision-making.
arXiv Detail & Related papers (2023-09-29T06:48:16Z) - Lightweight, Uncertainty-Aware Conformalized Visual Odometry [2.429910016019183]
Data-driven visual odometry (VO) is a critical subroutine for autonomous edge robotics.
Emerging edge robotics devices like insect-scale drones and surgical robots lack a computationally efficient framework to estimate VO's predictive uncertainties.
This paper presents a novel, lightweight, and statistically robust framework that leverages conformal inference (CI) to extract VO's uncertainty bands.
arXiv Detail & Related papers (2023-03-03T20:37:55Z) - Reinforcement Learning with a Terminator [80.34572413850186]
We learn the parameters of the TerMDP and leverage the structure of the estimation problem to provide state-wise confidence bounds.
We use these to construct a provably-efficient algorithm, which accounts for termination, and bound its regret.
arXiv Detail & Related papers (2022-05-30T18:40:28Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
We show how uncertainty estimation can be leveraged to enable safety critical image segmentation in autonomous driving.
We introduce a new uncertainty measure based on disagreeing predictions as measured by a dissimilarity function.
We show experimentally that our proposed approach is much less computationally intensive at inference time than competing methods.
arXiv Detail & Related papers (2021-05-28T09:23:05Z) - Untangling tradeoffs between recurrence and self-attention in neural
networks [81.30894993852813]
We present a formal analysis of how self-attention affects gradient propagation in recurrent networks.
We prove that it mitigates the problem of vanishing gradients when trying to capture long-term dependencies.
We propose a relevancy screening mechanism that allows for a scalable use of sparse self-attention with recurrence.
arXiv Detail & Related papers (2020-06-16T19:24:25Z) - Cost-effective Interactive Attention Learning with Neural Attention
Processes [79.8115563067513]
We propose a novel interactive learning framework which we refer to as Interactive Attention Learning (IAL)
IAL is prone to overfitting due to scarcity of human annotations, and requires costly retraining.
We tackle these challenges by proposing a sample-efficient attention mechanism and a cost-effective reranking algorithm for instances and features.
arXiv Detail & Related papers (2020-06-09T17:36:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.