Data-driven Force Observer for Human-Robot Interaction with Series Elastic Actuators using Gaussian Processes
- URL: http://arxiv.org/abs/2405.08711v1
- Date: Tue, 14 May 2024 15:51:52 GMT
- Title: Data-driven Force Observer for Human-Robot Interaction with Series Elastic Actuators using Gaussian Processes
- Authors: Samuel Tesfazgi, Markus Keßler, Emilio Trigili, Armin Lederer, Sandra Hirche,
- Abstract summary: In this work, we learn the unknown dynamics components using Gaussian process (GP) regression.
We derive guaranteed estimation error bounds, thus, facilitating the use in safety-critical applications.
We demonstrate the effectiveness of the proposed approach experimentally in a human-exoskeleton interaction scenario.
- Score: 4.229902091180109
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring safety and adapting to the user's behavior are of paramount importance in physical human-robot interaction. Thus, incorporating elastic actuators in the robot's mechanical design has become popular, since it offers intrinsic compliance and additionally provide a coarse estimate for the interaction force by measuring the deformation of the elastic components. While observer-based methods have been shown to improve these estimates, they rely on accurate models of the system, which are challenging to obtain in complex operating environments. In this work, we overcome this issue by learning the unknown dynamics components using Gaussian process (GP) regression. By employing the learned model in a Bayesian filtering framework, we improve the estimation accuracy and additionally obtain an observer that explicitly considers local model uncertainty in the confidence measure of the state estimate. Furthermore, we derive guaranteed estimation error bounds, thus, facilitating the use in safety-critical applications. We demonstrate the effectiveness of the proposed approach experimentally in a human-exoskeleton interaction scenario.
Related papers
- Understanding Human Activity with Uncertainty Measure for Novelty in Graph Convolutional Networks [2.223052975765005]
We introduce the Temporal Fusion Graph Convolutional Network.
It aims to rectify the inadequate boundary estimation of individual actions within an activity stream.
It also mitigates the issue of over-segmentation in the temporal dimension.
arXiv Detail & Related papers (2024-10-10T13:44:18Z) - UAHOI: Uncertainty-aware Robust Interaction Learning for HOI Detection [18.25576487115016]
This paper focuses on Human-Object Interaction (HOI) detection.
It addresses the challenge of identifying and understanding the interactions between humans and objects within a given image or video frame.
We propose a novel approach textscUAHOI, Uncertainty-aware Robust Human-Object Interaction Learning.
arXiv Detail & Related papers (2024-08-14T10:06:39Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
We demonstrate its effectiveness for multi-agent trajectory prediction and social robot navigation.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - JAB: Joint Adversarial Prompting and Belief Augmentation [81.39548637776365]
We introduce a joint framework in which we probe and improve the robustness of a black-box target model via adversarial prompting and belief augmentation.
This framework utilizes an automated red teaming approach to probe the target model, along with a belief augmenter to generate instructions for the target model to improve its robustness to those adversarial probes.
arXiv Detail & Related papers (2023-11-16T00:35:54Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
We propose a model predictive control approach for autonomous vehicles that exploits learned Gaussian processes for predicting human driving behavior.
A multi-mode predictive control approach considers the possible intentions of the human drivers.
arXiv Detail & Related papers (2023-03-08T17:14:57Z) - Safe Machine-Learning-supported Model Predictive Force and Motion
Control in Robotics [0.0]
Many robotic tasks, such as human-robot interactions or the handling of fragile objects, require tight control and limitation of appearing forces and moments alongside motion control to achieve safe yet high-performance operation.
We propose a learning-supported model predictive force and motion control scheme that provides safety guarantees while adapting to changing situations.
arXiv Detail & Related papers (2023-03-08T13:30:02Z) - Lightweight, Uncertainty-Aware Conformalized Visual Odometry [2.429910016019183]
Data-driven visual odometry (VO) is a critical subroutine for autonomous edge robotics.
Emerging edge robotics devices like insect-scale drones and surgical robots lack a computationally efficient framework to estimate VO's predictive uncertainties.
This paper presents a novel, lightweight, and statistically robust framework that leverages conformal inference (CI) to extract VO's uncertainty bands.
arXiv Detail & Related papers (2023-03-03T20:37:55Z) - Evaluating the Safety of Deep Reinforcement Learning Models using
Semi-Formal Verification [81.32981236437395]
We present a semi-formal verification approach for decision-making tasks based on interval analysis.
Our method obtains comparable results over standard benchmarks with respect to formal verifiers.
Our approach allows to efficiently evaluate safety properties for decision-making models in practical applications.
arXiv Detail & Related papers (2020-10-19T11:18:06Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
We present an online framework for safe crowd-robot interaction based on risk-sensitive optimal control, wherein the risk is modeled by the entropic risk measure.
Our modular approach decouples the crowd-robot interaction into learning-based prediction and model-based control.
A simulation study and a real-world experiment show that the proposed framework can accomplish safe and efficient navigation while avoiding collisions with more than 50 humans in the scene.
arXiv Detail & Related papers (2020-09-12T02:02:52Z) - Learning Compliance Adaptation in Contact-Rich Manipulation [81.40695846555955]
We propose a novel approach for learning predictive models of force profiles required for contact-rich tasks.
The approach combines an anomaly detection based on Bidirectional Gated Recurrent Units (Bi-GRU) and an adaptive force/impedance controller.
arXiv Detail & Related papers (2020-05-01T05:23:34Z) - Counter-example Guided Learning of Bounds on Environment Behavior [11.357397596759172]
We present a data-driven solution that allows for a system to be evaluated for specification conformance without an accurate model of the environment.
Our approach involves learning a conservative reactive bound of the environment's behavior using data and specification of the system's desired behavior.
arXiv Detail & Related papers (2020-01-20T19:58:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.