Deep Learning for Generalised Planning with Background Knowledge
- URL: http://arxiv.org/abs/2410.07923v1
- Date: Thu, 10 Oct 2024 13:49:05 GMT
- Title: Deep Learning for Generalised Planning with Background Knowledge
- Authors: Dillon Z. Chen, Rostislav Horčík, Gustav Šír,
- Abstract summary: Planning problems are easy to solve but hard to optimise.
We propose a new machine learning approach that allows users to specify background knowledge.
By incorporating BK, our approach bypasses the need to relearn how to solve problems from scratch and instead focuses the learning on plan quality optimisation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated planning is a form of declarative problem solving which has recently drawn attention from the machine learning (ML) community. ML has been applied to planning either as a way to test `reasoning capabilities' of architectures, or more pragmatically in an attempt to scale up solvers with learned domain knowledge. In practice, planning problems are easy to solve but hard to optimise. However, ML approaches still struggle to solve many problems that are often easy for both humans and classical planners. In this paper, we thus propose a new ML approach that allows users to specify background knowledge (BK) through Datalog rules to guide both the learning and planning processes in an integrated fashion. By incorporating BK, our approach bypasses the need to relearn how to solve problems from scratch and instead focuses the learning on plan quality optimisation. Experiments with BK demonstrate that our method successfully scales and learns to plan efficiently with high quality solutions from small training data generated in under 5 seconds.
Related papers
- Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
We introduce a novel framework for enhancing large language models' (LLMs) planning capabilities by using planning data derived from knowledge graphs (KGs)
LLMs fine-tuned with KG data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
arXiv Detail & Related papers (2024-06-20T13:07:38Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Understanding the Capabilities of Large Language Models for Automated
Planning [24.37599752610625]
The study seeks to shed light on the capabilities of LLMs in solving complex planning problems.
It provides insights into the most effective approaches for using LLMs in this context.
arXiv Detail & Related papers (2023-05-25T15:21:09Z) - Learning to Plan with Natural Language [111.76828049344839]
Large Language Models (LLMs) have shown remarkable performance in various basic natural language tasks.
For completing the complex task, we still need a plan for the task to guide LLMs to generate the specific solutions step by step.
We propose the Learning to Plan method, which involves two phases: (1) In the first learning task plan phase, it iteratively updates the task plan with new step-by-step solutions and behavioral instructions, which are obtained by prompting LLMs to derive from training error feedback.
arXiv Detail & Related papers (2023-04-20T17:09:12Z) - Heuristic Search Planning with Deep Neural Networks using Imitation,
Attention and Curriculum Learning [1.0323063834827413]
This paper presents a network model to learn a capable of relating relating to distant parts of the state space via optimal plan imitation.
To counter the limitation of the method in the creation of problems of increasing difficulty, we demonstrate the use of curriculum learning, where newly solved problem instances are added to the training set.
arXiv Detail & Related papers (2021-12-03T14:01:16Z) - Panoramic Learning with A Standardized Machine Learning Formalism [116.34627789412102]
This paper presents a standardized equation of the learning objective, that offers a unifying understanding of diverse ML algorithms.
It also provides guidance for mechanic design of new ML solutions, and serves as a promising vehicle towards panoramic learning with all experiences.
arXiv Detail & Related papers (2021-08-17T17:44:38Z) - SOLO: Search Online, Learn Offline for Combinatorial Optimization
Problems [4.777801093677586]
We study problems with real world applications such as machine scheduling, routing, and assignment.
We propose a method that combines Reinforcement Learning (RL) and planning.
This method can equally be applied to both the offline, as well as online, variants of the problem, in which the problem components are not known in advance, but rather arrive during the decision-making process.
arXiv Detail & Related papers (2021-04-04T17:12:24Z) - AMLSI: A Novel Accurate Action Model Learning Algorithm [1.1797787239802762]
The AMLSI approach does not require a training dataset of plan traces to work.
AMLSI proceeds by trial and error: it queries the system to learn with randomly generated action sequences.
Unlike other algorithms, we show that AMLSI is able to lift this lock by learning domains from partial and noisy observations.
arXiv Detail & Related papers (2020-11-26T13:25:08Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z) - A Unifying Framework for Reinforcement Learning and Planning [2.564530030795554]
This paper presents a unifying algorithmic framework for reinforcement learning and planning (FRAP)
At the end of the paper, we compare a variety of well-known planning, model-free and model-based RL algorithms along these dimensions.
arXiv Detail & Related papers (2020-06-26T14:30:41Z) - Meta Cyclical Annealing Schedule: A Simple Approach to Avoiding
Meta-Amortization Error [50.83356836818667]
We develop a novel meta-regularization objective using it cyclical annealing schedule and it maximum mean discrepancy (MMD) criterion.
The experimental results show that our approach substantially outperforms standard meta-learning algorithms.
arXiv Detail & Related papers (2020-03-04T04:43:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.