論文の概要: Omni-MATH: A Universal Olympiad Level Mathematic Benchmark For Large Language Models
- arxiv url: http://arxiv.org/abs/2410.07985v1
- Date: Fri, 11 Oct 2024 03:36:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 06:15:07.768748
- Title: Omni-MATH: A Universal Olympiad Level Mathematic Benchmark For Large Language Models
- Title(参考訳): Omni-MATH:大規模言語モデルのためのユニバーサルオリンピックレベルの数学ベンチマーク
- Authors: Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghaoran Quan, Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, Baobao Chang,
- Abstract要約: Olympiadレベルでの大規模言語モデルの数学的推論を評価するためのベンチマークを提案する。
既存のOlympiad関連のベンチマークとは異なり、我々のデータセットは数学にのみ焦点をあてている。
実験の結果,最も先進的なモデルであるOpenAI o1-miniとOpenAI o1-previewでさえ,高度に難解なオリンピアドレベルの問題に悩まされていることが明らかとなった。
- 参考スコア(独自算出の注目度): 63.31878920079154
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Recent advancements in large language models (LLMs) have led to significant breakthroughs in mathematical reasoning capabilities. However, existing benchmarks like GSM8K or MATH are now being solved with high accuracy (e.g., OpenAI o1 achieves 94.8% on MATH dataset), indicating their inadequacy for truly challenging these models. To bridge this gap, we propose a comprehensive and challenging benchmark specifically designed to assess LLMs' mathematical reasoning at the Olympiad level. Unlike existing Olympiad-related benchmarks, our dataset focuses exclusively on mathematics and comprises a vast collection of 4428 competition-level problems with rigorous human annotation. These problems are meticulously categorized into over 33 sub-domains and span more than 10 distinct difficulty levels, enabling a holistic assessment of model performance in Olympiad-mathematical reasoning. Furthermore, we conducted an in-depth analysis based on this benchmark. Our experimental results show that even the most advanced models, OpenAI o1-mini and OpenAI o1-preview, struggle with highly challenging Olympiad-level problems, with 60.54% and 52.55% accuracy, highlighting significant challenges in Olympiad-level mathematical reasoning.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、数学的推論能力に大きなブレークスルーをもたらした。
しかし、GSM8KやMATHのような既存のベンチマークは高い精度で解決されている(例えば、OpenAI o1はMATHデータセットで94.8%を達成した)。
このギャップを埋めるために、オリンピアードレベルでのLLMの数学的推論を評価するために設計された、包括的で挑戦的なベンチマークを提案する。
既存のOlympiad関連のベンチマークとは異なり、我々のデータセットは数学のみに重点を置いており、厳密な人間のアノテーションを使った4428の競合レベルの問題の膨大なコレクションを含んでいる。
これらの問題は33以上のサブドメインに厳密に分類され、Olympiad-mathematical reasoningにおけるモデル性能の総合的な評価を可能にしている。
さらに,このベンチマークに基づいて詳細な分析を行った。
実験の結果,最も先進的なモデルであるOpenAI o1-miniとOpenAI o1-previewでさえ,60.54%と52.55%の精度で,オリンピアードレベルの問題に悩まされ,オリンピアードレベルの数学的推論において重大な課題が浮き彫りにされていることがわかった。
関連論文リスト
- HARDMath: A Benchmark Dataset for Challenging Problems in Applied Mathematics [1.5716764919736026]
本稿では,解析的近似技術を必要とする応用数学問題に挑戦するデータセットであるHARDMathを紹介する。
本フレームワークは,数値基底真理に対して検証された解を用いて,多数の問題を自動生成する。
HARDMath-miniは,366問題からなるサブサンプルテストセットであり,応用科学の文脈で定式化された40の単語問題に対して,オープンソースLLMとクローズドソースLLMの両方を評価する。
論文 参考訳(メタデータ) (2024-10-13T20:09:41Z) - Evaluating Large Vision-and-Language Models on Children's Mathematical Olympiads [74.54183505245553]
ジョイントビジョンとテキスト推論のためのAI能力の体系的分析は、現在の科学文献に欠けている。
我々は,子どものオリンピアードからのビジュオ言語問題を用いて,その数学的およびアルゴリズム的推論能力に基づいて,最先端のLVLMを評価した。
以上の結果から,近代のLVLMは,高学年の問題解決において,より強力な推論能力を示す一方で,幼児向けの問題に正しく答える基盤が欠如していることが示唆された。
論文 参考訳(メタデータ) (2024-06-22T05:04:39Z) - OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for Superintelligent AI [73.75520820608232]
我々は,11,163のバイリンガル問題を含む,テキストのみとインターリーブされたテキストイメージのモダリティを紹介する。
これらの課題には、7つのフィールドと62の国際オリンピック大会にわたる幅広い規律が含まれており、データ漏洩について厳格に調査されている。
我々の評価によると、GPT-4oのような先進モデルでさえ、複雑な推論とマルチモーダル統合における現在のAI制限を反映して、全体的な精度は39.97%しか達成していない。
論文 参考訳(メタデータ) (2024-06-18T16:20:53Z) - LINGOLY: A Benchmark of Olympiad-Level Linguistic Reasoning Puzzles in Low-Resource and Extinct Languages [8.754506364968394]
LingOlyベンチマークは、大規模言語モデルにおける高度な推論能力のための新しいベンチマークである。
非常に低リソースまたは絶滅した言語における言語パターンの文脈内同定と一般化の能力を評価する。
直接精度と非文脈ベースラインとの比較により,暗記を暗記する性能を評価する。
論文 参考訳(メタデータ) (2024-06-10T11:50:29Z) - Common 7B Language Models Already Possess Strong Math Capabilities [61.61442513067561]
本稿では,LLaMA-2 7Bモデルと事前学習を併用したモデルが,すでに強力な数学的能力を示していることを示す。
拡張スケーリングの可能性は、公開されている数学の質問の不足によって制限されている。
論文 参考訳(メタデータ) (2024-03-07T18:00:40Z) - OlympiadBench: A Challenging Benchmark for Promoting AGI with Olympiad-Level Bilingual Multimodal Scientific Problems [62.06169250463104]
我々はOlympiadレベルのバイリンガル・マルチモーダル・サイエンス・ベンチマークであるOlympiadBenchを紹介し、Olympiadレベルの数学と物理学のコンペティションの8,476の問題を特徴とする。
最も優れたモデルであるGPT-4Vはオリンピアドベンチで平均17.97%を獲得し、物理学ではわずか10.74%である。
GPT-4Vの分析では、幻覚、知識欠失、論理的誤信などの問題が指摘されている。
論文 参考訳(メタデータ) (2024-02-21T18:49:26Z) - GeoEval: Benchmark for Evaluating LLMs and Multi-Modal Models on Geometry Problem-Solving [40.46491587796371]
我々はGeoEvalベンチマーク、2,000問題の主要サブセット、750問題サブセット、2000問題の追加サブセット、300問題のハードサブセットを含む包括的コレクションを紹介する。
これらのサブセットにおける10個のLLMとMMの評価から、WizardMathモデルは、主サブセットでは55.67%の精度で、ハードサブセットでは6.00%の精度しか達成していないことが分かる。
論文 参考訳(メタデータ) (2024-02-15T16:59:41Z) - CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs' Mathematical Reasoning Capabilities [25.857946070979576]
概念とHint-Annotated Math Problems (CHAMP) は、概念に注釈を付けた高校数学の競争問題である。
このベンチマークは困難で、最高のモデルは標準設定で58.1%しか得点できない。
モデルはしばしば、間違った推論ステップを通じて、正しい最終回答に到達します。
論文 参考訳(メタデータ) (2024-01-13T03:18:16Z) - AGIEval: A Human-Centric Benchmark for Evaluating Foundation Models [122.63704560157909]
我々は,人間中心の標準化試験の文脈で基礎モデルを評価するために設計された新しいベンチマークであるAGIEvalを紹介する。
GPT-4, ChatGPT, Text-Davinci-003 など,最先端基盤モデルの評価を行った。
GPT-4はSAT、LSAT、数学の競争で平均的な人事成績を上回り、SAT Mathテストでは95%の精度で、中国国立大学入試では92.5%の精度で合格している。
論文 参考訳(メタデータ) (2023-04-13T09:39:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。