論文の概要: CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs' Mathematical Reasoning Capabilities
- arxiv url: http://arxiv.org/abs/2401.06961v2
- Date: Sun, 9 Jun 2024 01:47:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 04:08:57.640577
- Title: CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs' Mathematical Reasoning Capabilities
- Title(参考訳): CHAMP:LLMの数学的推論能力の微粒化分析のための競合レベルデータセット
- Authors: Yujun Mao, Yoon Kim, Yilun Zhou,
- Abstract要約: 概念とHint-Annotated Math Problems (CHAMP) は、概念に注釈を付けた高校数学の競争問題である。
このベンチマークは困難で、最高のモデルは標準設定で58.1%しか得点できない。
モデルはしばしば、間違った推論ステップを通じて、正しい最終回答に到達します。
- 参考スコア(独自算出の注目度): 25.857946070979576
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent large language models (LLMs) have shown indications of mathematical reasoning ability on challenging competition-level problems, especially with self-generated verbalizations of intermediate reasoning steps (i.e., chain-of-thought prompting). However, current evaluations mainly focus on the end-to-end final answer correctness, and it is unclear whether LLMs can make use of helpful side information such as problem-specific hints. In this paper, we propose a challenging benchmark dataset for enabling such analyses. The Concept and Hint-Annotated Math Problems (CHAMP) consists of high school math competition problems, annotated with concepts, or general math facts, and hints, or problem-specific tricks. These annotations allow us to explore the effects of additional information, such as relevant hints, misleading concepts, or related problems. This benchmark is difficult, with the best model only scoring 58.1% in standard settings. With concepts and hints, performance sometimes improves, indicating that some models can make use of such side information. Furthermore, we annotate model-generated solutions for their correctness. Using this corpus, we find that models often arrive at the correct final answer through wrong reasoning steps. In addition, we test whether models are able to verify these solutions, and find that most models struggle.
- Abstract(参考訳): 最近の大規模言語モデル (LLM) は、特に中間的推論ステップ(すなわちチェーン・オブ・プルーピング)の自己生成言語化において、競争レベルの問題に挑戦する数学的推論能力を示す。
しかし、現在の評価は主にエンドツーエンドの最終回答の正当性に焦点が当てられており、LLMが問題固有のヒントなどの有用な副次情報を利用することができるかどうかは不明である。
本稿では、そのような分析を可能にするための挑戦的なベンチマークデータセットを提案する。
概念とヒント数学問題(英: Concept and Hint-Annotated Math Problems、CHAMP)は、概念や一般的な数学の事実、ヒント、問題固有のトリックを含む、高校数学の競争問題である。
これらのアノテーションは、関連するヒント、誤解を招く概念、関連する問題など、追加情報の効果を探索することを可能にする。
このベンチマークは困難で、最高のモデルは標準設定で58.1%しか得点できない。
概念とヒントによって、パフォーマンスは時として改善され、一部のモデルはそのようなサイド情報を利用することができることを示している。
さらに、モデル生成した解の正しさについてアノテートする。
このコーパスを用いて、間違った推論ステップを通じて、モデルが正しい最終回答に達することがよくあります。
さらに、モデルがこれらのソリューションを検証することができるかどうかを検証し、ほとんどのモデルが苦労していることを確認する。
関連論文リスト
- Large Language Models and Mathematical Reasoning Failures [1.6114012813668932]
本稿では,50の高校レベルの単語問題を用いた大規模言語モデル(LLM)の数学的推論能力について検討する。
最終回答と解決手順の両方を厳格に分析して、推論の失敗を特定します。
より新しいモデル(例えば、o3-mini、deepseek-r1)はより精度が高いが、全てのモデルは空間的推論、戦略的計画、算術における誤りを示す。
論文 参考訳(メタデータ) (2025-02-17T09:07:32Z) - MATH-Perturb: Benchmarking LLMs' Math Reasoning Abilities against Hard Perturbations [90.07275414500154]
各種モデルにおけるMATH-P-Hardの性能低下を観察する。
また、学習した問題解決スキルを盲目的に適用する新しい形態の記憶に関する懸念も提起する。
論文 参考訳(メタデータ) (2025-02-10T13:31:46Z) - Learning by Analogy: Enhancing Few-Shot Prompting for Math Word Problem Solving with Computational Graph-Based Retrieval [22.865124583257987]
同様に構造化された質問の類似性によって,大規模言語モデルの問題解決能力が向上することを示す。
具体的には、与えられた質問に類似した計算グラフを持つ問題の検索を頼りに、プロンプトの見本として機能する。
6つの数学単語問題データセットに対する実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-11-25T15:01:25Z) - MathGAP: Out-of-Distribution Evaluation on Problems with Arbitrarily Complex Proofs [80.96119560172224]
MathGAPは、それらの算術的証明構造に関する仕様に従って、問題文と連鎖推論トレースを生成する。
MathGAP を用いて, LLM はより深く, より広くなるにつれて, 性能が著しく低下することがわかった。
論文 参考訳(メタデータ) (2024-10-17T12:48:14Z) - MathCAMPS: Fine-grained Synthesis of Mathematical Problems From Human Curricula [33.5782208232163]
本研究では,高品質な数学問題を大規模に合成する手法であるMath CAMPSを提案する。
それぞれの標準を形式文法でエンコードし、様々な記号問題とその解をサンプリングする。
我々は、記号構造からフォローアップ質問を導き、それらをフォローアップ単語問題に変換する。
論文 参考訳(メタデータ) (2024-07-01T01:56:28Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStarは、大言語モデルの純粋に推論に基づく探索手法である。
推論タスクを探索問題として定式化し、最適な推論経路を特定するための2つの探索アイデアを提案する。
Llama-2-13BやMistral-7Bのようなオープンソースモデルの推論能力を大幅に向上させ、GPT-3.5やGrok-1に匹敵する性能を実現している。
論文 参考訳(メタデータ) (2024-05-25T15:07:33Z) - Optimizing Language Model's Reasoning Abilities with Weak Supervision [48.60598455782159]
弱い教師付きベンチマークであるtextscPuzzleBen について,25,147 の複雑な質問,回答,人為的合理性からなる。
データセットのユニークな側面は、10,000の未注釈の質問を含めることであり、LLMの推論能力を高めるために、より少ないスーパーサイズのデータを活用することができる。
論文 参考訳(メタデータ) (2024-05-07T07:39:15Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
大規模言語モデル (LLM) は、様々な数学的推論ベンチマークで顕著な性能を達成している。
1つの必須かつ頻繁な証拠は、数学の質問がわずかに変更されたとき、LLMは誤って振る舞うことができることである。
このことは, LLMの数学推論能力の頑健性を評価するために, 幅広い質問のバリエーションを試すことによるものである。
論文 参考訳(メタデータ) (2024-02-29T15:26:14Z) - GeomVerse: A Systematic Evaluation of Large Models for Geometric
Reasoning [17.61621287003562]
幾何学問題のレンズを用いて視覚言語モデル(VLM)を様々な軸に沿って評価する。
複数の軸に沿った制御可能な難易度を持つ幾何学的質問の合成データセットを手続き的に作成する。
最新のVLMのベンチマークを用いて得られた実験結果から,これらのモデルが幾何学的対象に適さないことが示された。
論文 参考訳(メタデータ) (2023-12-19T15:25:39Z) - Towards a Holistic Understanding of Mathematical Questions with
Contrastive Pre-training [65.10741459705739]
本稿では,数学的問題表現,すなわち QuesCo に対する対照的な事前学習手法を提案する。
まず、コンテンツレベルと構造レベルを含む2段階の質問強化を設計し、類似した目的で文字通り多様な質問ペアを生成する。
そこで我々は,知識概念の階層的情報を完全に活用するために,知識階層を意識したランク戦略を提案する。
論文 参考訳(メタデータ) (2023-01-18T14:23:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。