論文の概要: HARDMath: A Benchmark Dataset for Challenging Problems in Applied Mathematics
- arxiv url: http://arxiv.org/abs/2410.09988v1
- Date: Sun, 13 Oct 2024 20:09:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 03:43:37.273348
- Title: HARDMath: A Benchmark Dataset for Challenging Problems in Applied Mathematics
- Title(参考訳): HARDMath: 応用数学における問題解決のためのベンチマークデータセット
- Authors: Jingxuan Fan, Sarah Martinson, Erik Y. Wang, Kaylie Hausknecht, Jonah Brenner, Danxian Liu, Nianli Peng, Corey Wang, Michael P. Brenner,
- Abstract要約: 本稿では,解析的近似技術を必要とする応用数学問題に挑戦するデータセットであるHARDMathを紹介する。
本フレームワークは,数値基底真理に対して検証された解を用いて,多数の問題を自動生成する。
HARDMath-miniは,366問題からなるサブサンプルテストセットであり,応用科学の文脈で定式化された40の単語問題に対して,オープンソースLLMとクローズドソースLLMの両方を評価する。
- 参考スコア(独自算出の注目度): 1.5716764919736026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advanced applied mathematics problems are underrepresented in existing Large Language Model (LLM) benchmark datasets. To address this, we introduce HARDMath, a dataset inspired by a graduate course on asymptotic methods, featuring challenging applied mathematics problems that require analytical approximation techniques. These problems demand a combination of mathematical reasoning, computational tools, and subjective judgment, making them difficult for LLMs. Our framework auto-generates a large number of problems with solutions validated against numerical ground truths. We evaluate both open- and closed-source LLMs on HARDMath-mini, a sub-sampled test set of 366 problems, as well as on 40 word problems formulated in applied science contexts. Even leading closed-source models like GPT-4 achieve only 43.8% overall accuracy with few-shot Chain-of-Thought prompting, and all models demonstrate significantly lower performance compared to results on existing mathematics benchmark datasets. We additionally conduct a detailed error analysis to gain insights into the failure cases of LLMs. These results demonstrate limitations of current LLM performance on advanced graduate-level applied math problems and underscore the importance of datasets like HARDMath to advance mathematical abilities of LLMs.
- Abstract(参考訳): 高度な応用数学の問題は、既存のLarge Language Model (LLM)ベンチマークデータセットでは不足している。
そこで本研究では, 漸近的手法を応用したHARDMathを提案する。
これらの問題は、数学的推論、計算ツール、主観的判断の組み合わせを必要とするため、LLMでは難しい。
本フレームワークは,数値基底真理に対して検証された解を用いて,多数の問題を自動生成する。
HARDMath-miniは,366問題からなるサブサンプルテストセットであり,応用科学の文脈で定式化された40の単語問題に対して,オープンソースLLMとクローズドソースLLMの両方を評価する。
GPT-4のような主要なクローズドソースモデルでさえ、数ショットのChain-of-Thoughtのプロンプトで全体の43.8%の精度しか達成していない。
また, LLMの故障事例の知見を得るために, 詳細な誤り解析を行う。
これらの結果は、先進的な段階の応用数学問題に対する現在のLLM性能の限界を示し、LLMの数学的能力を向上させるためにHARDMathのようなデータセットの重要性を強調している。
関連論文リスト
- MathHay: An Automated Benchmark for Long-Context Mathematical Reasoning in LLMs [61.74749961334557]
MathHayは、LLMの長文数学的推論能力を評価するために設計された自動ベンチマークである。
我々は,8つのトップパフォーマンスモデルの長文数学的推論能力を評価するために,MathHayの広範な実験を行った。
論文 参考訳(メタデータ) (2024-10-07T02:30:07Z) - ErrorRadar: Benchmarking Complex Mathematical Reasoning of Multimodal Large Language Models Via Error Detection [60.297079601066784]
エラー検出におけるMLLMの能力を評価するために設計された最初のベンチマークであるErrorRadarを紹介する。
ErrorRadarはエラーステップ識別とエラー分類という2つのサブタスクを評価している。
2500の高品質なマルチモーダルK-12数学問題で構成され、実世界の学生相互作用から収集される。
GPT-4oの優れた性能は、まだ人間の評価に約10%遅れているため、大きな課題が残っている。
論文 参考訳(メタデータ) (2024-10-06T14:59:09Z) - MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large Language Models Using Odyssey Math Data [20.31528845718877]
大規模言語モデル(LLM)は、非常に高度な自然言語理解を持ち、強力な問題解決能力を示した。
本稿では,新たに開発された"MathOdyssey"データセットを用いて,LLMの数学的問題解決能力について検討する。
論文 参考訳(メタデータ) (2024-06-26T13:02:35Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStarは、大言語モデルの純粋に推論に基づく探索手法である。
推論タスクを探索問題として定式化し、最適な推論経路を特定するための2つの探索アイデアを提案する。
Llama-2-13BやMistral-7Bのようなオープンソースモデルの推論能力を大幅に向上させ、GPT-3.5やGrok-1に匹敵する性能を実現している。
論文 参考訳(メタデータ) (2024-05-25T15:07:33Z) - MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark [82.64129627675123]
MathBenchは、大規模言語モデルの数学的能力を厳格に評価する新しいベンチマークである。
MathBenchは幅広い数学の分野にまたがっており、理論的な理解と実践的な問題解決のスキルの両方を詳細に評価している。
論文 参考訳(メタデータ) (2024-05-20T17:52:29Z) - Mathify: Evaluating Large Language Models on Mathematical Problem Solving Tasks [34.09857430966818]
我々は,11番目と12番目の標準数学 NCERT 教科書から得られた数学データセット "MathQuest" を紹介する。
LLaMA-2, WizardMath, MAmmoTHの3つの大きな言語モデルを用いた微調整実験を行った。
この3つのモデルのうち,MAmmoTH-13Bが最も熟練したモデルとして登場し,提示された数理問題の解法において,最高レベルの能力を達成した。
論文 参考訳(メタデータ) (2024-04-19T08:45:42Z) - Can LLMs Master Math? Investigating Large Language Models on Math Stack Exchange [25.419977967846144]
大規模言語モデル(LLM)は、様々な自然言語タスクにおいて例外的な機能を示した。
本稿では、複雑な数学的問題解決をナビゲートする上でのLLMの限界について考察する。
論文 参考訳(メタデータ) (2024-03-30T12:48:31Z) - MathScale: Scaling Instruction Tuning for Mathematical Reasoning [70.89605383298331]
大規模言語モデル(LLM)は問題解決において顕著な能力を示した。
しかし、数学的な問題を解く能力は依然として不十分である。
高品質な数学的推論データを作成するためのシンプルでスケーラブルな方法であるMathScaleを提案する。
論文 参考訳(メタデータ) (2024-03-05T11:42:59Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
大規模言語モデル (LLM) は、様々な数学的推論ベンチマークで顕著な性能を達成している。
1つの必須かつ頻繁な証拠は、数学の質問がわずかに変更されたとき、LLMは誤って振る舞うことができることである。
このことは, LLMの数学推論能力の頑健性を評価するために, 幅広い質問のバリエーションを試すことによるものである。
論文 参考訳(メタデータ) (2024-02-29T15:26:14Z) - MathPrompter: Mathematical Reasoning using Large Language Models [7.953723258038284]
大規模言語モデル (LLM) は算術的推論タスクを解く際の性能に制限がある。
MathPrompterはZero-shot-of- Thoughtプロンプト技術を使って複数の代数式やPython関数を生成し、異なる方法で同じ数学問題を解く。
論文 参考訳(メタデータ) (2023-03-04T04:43:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。