Omni-MATH: A Universal Olympiad Level Mathematic Benchmark For Large Language Models
- URL: http://arxiv.org/abs/2410.07985v2
- Date: Fri, 11 Oct 2024 03:36:50 GMT
- Title: Omni-MATH: A Universal Olympiad Level Mathematic Benchmark For Large Language Models
- Authors: Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghaoran Quan, Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, Baobao Chang,
- Abstract summary: We propose a benchmark specifically designed to assess large language models' mathematical reasoning at the Olympiad level.
Unlike existing Olympiad-related benchmarks, our dataset focuses exclusively on mathematics.
Our experimental results show that even the most advanced models, OpenAI o1-mini and OpenAI o1-preview, struggle with highly challenging Olympiad-level problems.
- Score: 63.31878920079154
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Recent advancements in large language models (LLMs) have led to significant breakthroughs in mathematical reasoning capabilities. However, existing benchmarks like GSM8K or MATH are now being solved with high accuracy (e.g., OpenAI o1 achieves 94.8% on MATH dataset), indicating their inadequacy for truly challenging these models. To bridge this gap, we propose a comprehensive and challenging benchmark specifically designed to assess LLMs' mathematical reasoning at the Olympiad level. Unlike existing Olympiad-related benchmarks, our dataset focuses exclusively on mathematics and comprises a vast collection of 4428 competition-level problems with rigorous human annotation. These problems are meticulously categorized into over 33 sub-domains and span more than 10 distinct difficulty levels, enabling a holistic assessment of model performance in Olympiad-mathematical reasoning. Furthermore, we conducted an in-depth analysis based on this benchmark. Our experimental results show that even the most advanced models, OpenAI o1-mini and OpenAI o1-preview, struggle with highly challenging Olympiad-level problems, with 60.54% and 52.55% accuracy, highlighting significant challenges in Olympiad-level mathematical reasoning.
Related papers
- HARDMath: A Benchmark Dataset for Challenging Problems in Applied Mathematics [1.5716764919736026]
We introduce HARDMath, a dataset featuring challenging applied mathematics problems that require analytical approximation techniques.
Our framework auto-generates a large number of problems with solutions validated against numerical ground truths.
We evaluate both open- and closed-source LLMs on HARDMath-mini, a sub-sampled test set of 366 problems, as well as on 40 word problems formulated in applied science contexts.
arXiv Detail & Related papers (2024-10-13T20:09:41Z) - Evaluating Large Vision-and-Language Models on Children's Mathematical Olympiads [74.54183505245553]
A systematic analysis of AI capabilities for joint vision and text reasoning is missing in the current scientific literature.
We evaluate state-of-the-art LVLMs on their mathematical and algorithmic reasoning abilities using visuo-linguistic problems from children's Olympiads.
Our results show that modern LVLMs do demonstrate increasingly powerful reasoning skills in solving problems for higher grades, but lack the foundations to correctly answer problems designed for younger children.
arXiv Detail & Related papers (2024-06-22T05:04:39Z) - OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for Superintelligent AI [73.75520820608232]
We introduce OlympicArena, which includes 11,163 bilingual problems across both text-only and interleaved text-image modalities.
These challenges encompass a wide range of disciplines spanning seven fields and 62 international Olympic competitions, rigorously examined for data leakage.
Our evaluations reveal that even advanced models like GPT-4o only achieve a 39.97% overall accuracy, illustrating current AI limitations in complex reasoning and multimodal integration.
arXiv Detail & Related papers (2024-06-18T16:20:53Z) - LINGOLY: A Benchmark of Olympiad-Level Linguistic Reasoning Puzzles in Low-Resource and Extinct Languages [8.754506364968394]
The LingOly benchmark is a novel benchmark for advanced reasoning abilities in large language models.
We evaluate capabilities for in-context identification and generalisation of linguistic patterns in very low-resource or extinct languages.
We assess performance with both direct accuracy and comparison to a no-context baseline to penalise memorisation.
arXiv Detail & Related papers (2024-06-10T11:50:29Z) - Common 7B Language Models Already Possess Strong Math Capabilities [61.61442513067561]
This paper shows that the LLaMA-2 7B model with common pre-training already exhibits strong mathematical abilities.
The potential for extensive scaling is constrained by the scarcity of publicly available math questions.
arXiv Detail & Related papers (2024-03-07T18:00:40Z) - OlympiadBench: A Challenging Benchmark for Promoting AGI with Olympiad-Level Bilingual Multimodal Scientific Problems [62.06169250463104]
We present OlympiadBench, an Olympiad-level bilingual multimodal scientific benchmark, featuring 8,476 problems from Olympiad-level mathematics and physics competitions.
The best-performing model, GPT-4V, attains an average score of 17.97% on OlympiadBench, with a mere 10.74% in physics.
Our analysis orienting GPT-4V points out prevalent issues with hallucinations, knowledge omissions, and logical fallacies.
arXiv Detail & Related papers (2024-02-21T18:49:26Z) - GeoEval: Benchmark for Evaluating LLMs and Multi-Modal Models on Geometry Problem-Solving [40.46491587796371]
We introduce the GeoEval benchmark, a comprehensive collection that includes a main subset of 2,000 problems, a 750 problems subset focusing on backward reasoning, an augmented subset of 2,000 problems, and a hard subset of 300 problems.
Our evaluation of ten LLMs and MMs across these varied subsets reveals that the WizardMath model excels, achieving a 55.67% accuracy rate on the main subset but only a 6.00% accuracy on the hard subset.
arXiv Detail & Related papers (2024-02-15T16:59:41Z) - CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs' Mathematical Reasoning Capabilities [25.857946070979576]
Concept and Hint-Annotated Math Problems (CHAMP) consists of high school math competition problems annotated with concepts.
This benchmark is difficult, with the best model only scoring 58.1% in standard settings.
We find that models often arrive at the correct final answer through wrong reasoning steps.
arXiv Detail & Related papers (2024-01-13T03:18:16Z) - AGIEval: A Human-Centric Benchmark for Evaluating Foundation Models [122.63704560157909]
We introduce AGIEval, a novel benchmark designed to assess foundation model in the context of human-centric standardized exams.
We evaluate several state-of-the-art foundation models, including GPT-4, ChatGPT, and Text-Davinci-003.
GPT-4 surpasses average human performance on SAT, LSAT, and math competitions, attaining a 95% accuracy rate on the SAT Math test and a 92.5% accuracy on the English test of the Chinese national college entrance exam.
arXiv Detail & Related papers (2023-04-13T09:39:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.