Composite Learning Units: Generalized Learning Beyond Parameter Updates to Transform LLMs into Adaptive Reasoners
- URL: http://arxiv.org/abs/2410.08037v1
- Date: Wed, 9 Oct 2024 02:27:58 GMT
- Title: Composite Learning Units: Generalized Learning Beyond Parameter Updates to Transform LLMs into Adaptive Reasoners
- Authors: Santosh Kumar Radha, Oktay Goktas,
- Abstract summary: We introduce Composite Learning Units (CLUs) designed to transform reasoners into learners capable of continuous learning.
CLUs are built on an architecture that allows a reasoning model to maintain and evolve a dynamic knowledge repository.
We demonstrate CLUs' effectiveness through a cryptographic reasoning task, where they continuously evolve their understanding through feedback to uncover hidden transformation rules.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human learning thrives on the ability to learn from mistakes, adapt through feedback, and refine understanding-processes often missing in static machine learning models. In this work, we introduce Composite Learning Units (CLUs) designed to transform reasoners, such as Large Language Models (LLMs), into learners capable of generalized, continuous learning without conventional parameter updates while enhancing their reasoning abilities through continual interaction and feedback. CLUs are built on an architecture that allows a reasoning model to maintain and evolve a dynamic knowledge repository: a General Knowledge Space for broad, reusable insights and a Prompt-Specific Knowledge Space for task-specific learning. Through goal-driven interactions, CLUs iteratively refine these knowledge spaces, enabling the system to adapt dynamically to complex tasks, extract nuanced insights, and build upon past experiences autonomously. We demonstrate CLUs' effectiveness through a cryptographic reasoning task, where they continuously evolve their understanding through feedback to uncover hidden transformation rules. While conventional models struggle to grasp underlying logic, CLUs excel by engaging in an iterative, goal-oriented process. Specialized components-handling knowledge retrieval, prompt generation, and feedback analysis-work together within a reinforcing feedback loop. This approach allows CLUs to retain the memory of past failures and successes, adapt autonomously, and apply sophisticated reasoning effectively, continually learning from mistakes while also building on breakthroughs.
Related papers
- GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning framework that integrates the parametric and non-parametric memories.
Our method facilitates a more logical and step-wise reasoning approach akin to experts' problem-solving, rather than gold answer retrieval.
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
Domain-Class Incremental Learning is a realistic but challenging continual learning scenario.
To handle these diverse tasks, pre-trained Vision-Language Models (VLMs) are introduced for their strong generalizability.
This incurs a new problem: the knowledge encoded in the pre-trained VLMs may be disturbed when adapting to new tasks, compromising their inherent zero-shot ability.
Existing methods tackle it by tuning VLMs with knowledge distillation on extra datasets, which demands heavy overhead.
We propose the Distribution-aware Interference-free Knowledge Integration (DIKI) framework, retaining pre-trained knowledge of
arXiv Detail & Related papers (2024-07-07T12:19:37Z) - Learn it or Leave it: Module Composition and Pruning for Continual Learning [48.07144492109635]
MoCL-P is a lightweight continual learning method that balances knowledge integration and computational overhead.
Our evaluation shows that MoCL-P achieves state-of-the-art performance and improves parameter efficiency by up to three times.
arXiv Detail & Related papers (2024-06-26T19:18:28Z) - Towards Incremental Learning in Large Language Models: A Critical Review [0.0]
This review provides a comprehensive analysis of incremental learning in Large Language Models.
It synthesizes the state-of-the-art incremental learning paradigms, including continual learning, meta-learning, parameter-efficient learning, and mixture-of-experts learning.
An important finding is that many of these approaches do not update the core model, and none of them update incrementally in real-time.
arXiv Detail & Related papers (2024-04-28T20:44:53Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
Large Language Models (LLMs) have shown extraordinary capabilities in understanding and generating text that closely mirrors human communication.
This paper defines the knowledge editing problem and provides a comprehensive review of cutting-edge approaches.
We introduce a new benchmark, KnowEdit, for a comprehensive empirical evaluation of representative knowledge editing approaches.
arXiv Detail & Related papers (2024-01-02T16:54:58Z) - Online Continual Knowledge Learning for Language Models [3.654507524092343]
Large Language Models (LLMs) serve as repositories of extensive world knowledge, enabling them to perform tasks such as question-answering and fact-checking.
Online Continual Knowledge Learning (OCKL) aims to manage the dynamic nature of world knowledge in LMs under real-time constraints.
arXiv Detail & Related papers (2023-11-16T07:31:03Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
We design a paradigm for lifelong learning based on meta-learning and associative mechanism of the brain.
It tackles the problem from two aspects: extracting knowledge and memorizing knowledge.
It is theoretically analyzed that the proposed learning paradigm can make the models of different tasks converge to the same optimum.
arXiv Detail & Related papers (2022-08-27T09:27:36Z) - Learning Fast, Learning Slow: A General Continual Learning Method based
on Complementary Learning System [13.041607703862724]
We propose CLS-ER, a novel dual memory experience replay (ER) method.
New knowledge is acquired while aligning the decision boundaries with the semantic memories.
Our approach achieves state-of-the-art performance on standard benchmarks.
arXiv Detail & Related papers (2022-01-29T15:15:23Z) - Towards Continual Knowledge Learning of Language Models [11.000501711652829]
Large Language Models (LMs) are known to encode world knowledge in their parameters as they pretrain on a vast amount of web corpus.
In real-world scenarios, the world knowledge stored in the LMs can quickly become outdated as the world changes.
We formulate a new continual learning (CL) problem called Continual Knowledge Learning (CKL)
arXiv Detail & Related papers (2021-10-07T07:00:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.