IncEventGS: Pose-Free Gaussian Splatting from a Single Event Camera
- URL: http://arxiv.org/abs/2410.08107v2
- Date: Fri, 18 Oct 2024 16:26:30 GMT
- Title: IncEventGS: Pose-Free Gaussian Splatting from a Single Event Camera
- Authors: Jian Huang, Chengrui Dong, Peidong Liu,
- Abstract summary: IncEventGS is an incremental 3D Gaussian splatting reconstruction algorithm with a single event camera.
We exploit the tracking and mapping paradigm of conventional SLAM pipelines for IncEventGS.
- Score: 7.515256982860307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit neural representation and explicit 3D Gaussian Splatting (3D-GS) for novel view synthesis have achieved remarkable progress with frame-based camera (e.g. RGB and RGB-D cameras) recently. Compared to frame-based camera, a novel type of bio-inspired visual sensor, i.e. event camera, has demonstrated advantages in high temporal resolution, high dynamic range, low power consumption and low latency. Due to its unique asynchronous and irregular data capturing process, limited work has been proposed to apply neural representation or 3D Gaussian splatting for an event camera. In this work, we present IncEventGS, an incremental 3D Gaussian Splatting reconstruction algorithm with a single event camera. To recover the 3D scene representation incrementally, we exploit the tracking and mapping paradigm of conventional SLAM pipelines for IncEventGS. Given the incoming event stream, the tracker firstly estimates an initial camera motion based on prior reconstructed 3D-GS scene representation. The mapper then jointly refines both the 3D scene representation and camera motion based on the previously estimated motion trajectory from the tracker. The experimental results demonstrate that IncEventGS delivers superior performance compared to prior NeRF-based methods and other related baselines, even we do not have the ground-truth camera poses. Furthermore, our method can also deliver better performance compared to state-of-the-art event visual odometry methods in terms of camera motion estimation. Code is publicly available at: https://github.com/wu-cvgl/IncEventGS.
Related papers
- E-3DGS: Gaussian Splatting with Exposure and Motion Events [29.042018288378447]
We propose E-3DGS, a novel event-based approach that partitions events into motion and exposure.
We introduce a novel integration of 3DGS with exposure events for high-quality reconstruction of explicit scene representations.
Our method is faster and delivers better reconstruction quality than event-based NeRF while being more cost-effective than NeRF methods.
arXiv Detail & Related papers (2024-10-22T13:17:20Z) - EF-3DGS: Event-Aided Free-Trajectory 3D Gaussian Splatting [76.02450110026747]
Event cameras, inspired by biological vision, record pixel-wise intensity changes asynchronously with high temporal resolution.
We propose Event-Aided Free-Trajectory 3DGS, which seamlessly integrates the advantages of event cameras into 3DGS.
We evaluate our method on the public Tanks and Temples benchmark and a newly collected real-world dataset, RealEv-DAVIS.
arXiv Detail & Related papers (2024-10-20T13:44:24Z) - MotionGS: Exploring Explicit Motion Guidance for Deformable 3D Gaussian Splatting [56.785233997533794]
We propose a novel deformable 3D Gaussian splatting framework called MotionGS.
MotionGS explores explicit motion priors to guide the deformation of 3D Gaussians.
Experiments in the monocular dynamic scenes validate that MotionGS surpasses state-of-the-art methods.
arXiv Detail & Related papers (2024-10-10T08:19:47Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled spatial sensitivity pruning score that outperforms current approaches.
We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model.
Our pipeline increases the average rendering speed of 3D-GS by 2.65$times$ while retaining more salient foreground information.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - EventEgo3D: 3D Human Motion Capture from Egocentric Event Streams [59.77837807004765]
This paper introduces a new problem, i.e., 3D human motion capture from an egocentric monocular event camera with a fisheye lens.
Event streams have high temporal resolution and provide reliable cues for 3D human motion capture under high-speed human motions and rapidly changing illumination.
Our EE3D demonstrates robustness and superior 3D accuracy compared to existing solutions while supporting real-time 3D pose update rates of 140Hz.
arXiv Detail & Related papers (2024-04-12T17:59:47Z) - COLMAP-Free 3D Gaussian Splatting [88.420322646756]
We propose a novel method to perform novel view synthesis without any SfM preprocessing.
We process the input frames in a sequential manner and progressively grow the 3D Gaussians set by taking one input frame at a time.
Our method significantly improves over previous approaches in view synthesis and camera pose estimation under large motion changes.
arXiv Detail & Related papers (2023-12-12T18:39:52Z) - Gaussian Splatting SLAM [16.3858380078553]
We present the first application of 3D Gaussian Splatting in monocular SLAM.
Our method runs live at 3fps, unifying the required representation for accurate tracking, mapping, and high-quality rendering.
Several innovations are required to continuously reconstruct 3D scenes with high fidelity from a live camera.
arXiv Detail & Related papers (2023-12-11T18:19:04Z) - Differentiable Event Stream Simulator for Non-Rigid 3D Tracking [82.56690776283428]
Our differentiable simulator enables non-rigid 3D tracking of deformable objects from event streams.
We show the effectiveness of our approach for various types of non-rigid objects and compare to existing methods for non-rigid 3D tracking.
arXiv Detail & Related papers (2021-04-30T17:58:07Z) - Lifting Monocular Events to 3D Human Poses [22.699272716854967]
This paper presents a novel 3D human pose estimation approach using a single stream of asynchronous events as input.
We propose the first learning-based method for 3D human pose from a single stream of events.
Experiments demonstrate that our method achieves solid accuracy, narrowing the performance gap between standard RGB and event-based vision.
arXiv Detail & Related papers (2021-04-21T16:07:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.