論文の概要: A Closer Look at Machine Unlearning for Large Language Models
- arxiv url: http://arxiv.org/abs/2410.08109v1
- Date: Thu, 10 Oct 2024 16:56:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 05:15:31.511384
- Title: A Closer Look at Machine Unlearning for Large Language Models
- Title(参考訳): 大規模言語モデルの機械学習
- Authors: Xiaojian Yuan, Tianyu Pang, Chao Du, Kejiang Chen, Weiming Zhang, Min Lin,
- Abstract要約: 大型言語モデル(LLM)は機密または著作権のあるコンテンツを記憶し、プライバシーと法的懸念を高める。
LLMの機械学習におけるいくつかの問題について議論し、可能なアプローチについての洞察を提供する。
- 参考スコア(独自算出の注目度): 46.245404272612795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) may memorize sensitive or copyrighted content, raising privacy and legal concerns. Due to the high cost of retraining from scratch, researchers attempt to employ machine unlearning to remove specific content from LLMs while preserving the overall performance. In this paper, we discuss several issues in machine unlearning for LLMs and provide our insights on possible approaches. To address the issue of inadequate evaluation of model outputs after unlearning, we introduce three additional metrics to evaluate token diversity, sentence semantics, and factual correctness. We then categorize unlearning methods into untargeted and targeted, and discuss their issues respectively. Specifically, the behavior that untargeted unlearning attempts to approximate is unpredictable and may involve hallucinations, and existing regularization is insufficient for targeted unlearning. To alleviate these issues, we propose using the objective of maximizing entropy (ME) for untargeted unlearning and incorporate answer preservation (AP) loss as regularization for targeted unlearning. Experimental results across three scenarios, i.e., fictitious unlearning, continual unlearning, and real-world unlearning, demonstrate the effectiveness of our approaches. The code is available at https://github.com/sail-sg/closer-look-LLM-unlearning.
- Abstract(参考訳): 大型言語モデル(LLM)は機密または著作権のあるコンテンツを記憶し、プライバシーと法的懸念を高める。
スクラッチからリトレーニングするコストが高いため、研究者は機械学習を使ってLLMから特定のコンテンツを取り除き、全体的なパフォーマンスを保とうとしている。
本稿では,LLMの機械学習におけるいくつかの課題について論じ,その可能性について考察する。
非学習後のモデル出力の評価が不十分な問題に対処するために,トークンの多様性,文の意味,事実的正確性を評価するための3つの指標を導入する。
次に、未学習の手法を未学習と対象に分類し、それぞれの問題を議論する。
具体的には、未学習者が近似しようとする行動は予測不可能であり、幻覚を伴う可能性があり、既存の正規化は対象未学習に対して不十分である。
これらの問題を緩和するために,未学習者を対象としたエントロピー(ME)の最大化と,対象未学習者に対する正規化として回答保存(AP)損失を取り入れることを提案する。
実証的未学習、連続的未学習、実世界の未学習の3つのシナリオにわたる実験結果は、我々のアプローチの有効性を実証する。
コードはhttps://github.com/sail-sg/closer-look-LLM-unlearningで公開されている。
関連論文リスト
- Does Unlearning Truly Unlearn? A Black Box Evaluation of LLM Unlearning Methods [1.9799527196428242]
大規模言語モデルアンラーニングは、LLMが悪意ある目的のために使用するのを防ぐために学んだ有害な情報を除去することを目的としている。
LMUとRMUは、LLMアンラーニングの2つの方法として提案され、アンラーニングベンチマークで印象的な結果を得た。
論文 参考訳(メタデータ) (2024-11-18T22:31:17Z) - Breaking Chains: Unraveling the Links in Multi-Hop Knowledge Unlearning [38.03304773600225]
大きな言語モデル(LLM)は、しばしば個人または著作権のあるデータを含む巨大な情報ストアとして機能し、それらをゼロから再トレーニングすることは不可能である。
MUNCHは、マルチホップクエリをサブクエストに分解し、最終的な意思決定における未学習モデルの不確実性を活用する、単純な不確実性に基づくアプローチである。
論文 参考訳(メタデータ) (2024-10-17T07:00:15Z) - Practical Unlearning for Large Language Models [23.515444452866404]
機械学習(MU)は、これらの問題に対処するための有望なソリューションとして登場した。
MUは通常、実用性を維持するために元のトレーニングデータへの完全なアクセスを前提とします。
既存のLLMアンラーニング手法は、望ましくないデータアンラーニングに最も影響を受けるデータへのアクセスを前提としていることが多い。
我々は,これらの課題を克服し,実践的なLLMアンラーニングを実現するためのO3フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-14T14:26:17Z) - UnUnlearning: Unlearning is not sufficient for content regulation in advanced generative AI [50.61495097098296]
大規模言語モデル(LLM)におけるアンラーニングのパラダイムを再考する。
未学習の概念を導入し、未学習の知識を文脈内で再導入する。
我々は、不寛容な知識に対するコンテンツフィルタリングが不可欠であり、正確な未学習スキームでさえ、効果的なコンテンツ規制には不十分であると主張している。
論文 参考訳(メタデータ) (2024-06-27T10:24:35Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
最近の研究は、勾配上昇(GA)を通した大規模言語モデル(LLM)の未学習にアプローチし始めている。
その単純さと効率性にもかかわらず、我々はGAベースの手法が過剰な未学習の傾向に直面することを示唆している。
過剰な未学習の度合いを制御できるいくつかの制御手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - Large Language Model Unlearning via Embedding-Corrupted Prompts [10.889859281637406]
大規模言語モデルのための軽量なアンラーニングフレームワークである textbfEmbedding-COrrupted (ECO) Prompts を提案する。
推論中に未学習の状態を識別し、忘れるプロンプトを保護するためにプロンプト分類器を用いて強制する。
その結果, 学習対象を満足させるだけでなく, 忘れることを意図したデータに基づいて訓練されたことのないモデルから得られる出力を, より正確に近似できることがわかった。
論文 参考訳(メタデータ) (2024-06-12T06:56:20Z) - Offset Unlearning for Large Language Models [49.851093293780615]
アンラーニングは、問題のあるトレーニングデータに影響された大規模言語モデルの潜在的な治療法として浮上した。
ブラックボックスLLMのためのオフセットアンラーニングフレームワークである$delta$-unlearningを提案する。
実験によると、$delta$-unlearningは、一般的なアウトオブスコープタスクにおいて、同じような、あるいはより強力なパフォーマンスを維持しながら、ターゲットデータを効果的に解放することができる。
論文 参考訳(メタデータ) (2024-04-17T03:39:51Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
大規模言語モデル(LLM)の領域における機械学習の研究
このイニシアチブは、望ましくないデータの影響(機密情報や違法情報など)と関連するモデル機能を排除することを目的としている。
論文 参考訳(メタデータ) (2024-02-13T20:51:58Z) - Machine Unlearning in Large Language Models [8.14992136443131]
本稿では,大規模言語モデルに新しい機械学習フレームワークを導入する。
我々の目標は、LSMが有害、幻覚、あるいはプライバシーを侵害する応答を生じさせないようにすることです。
実験結果から,本手法はモデル性能を実質的に損なうことなく,学習対象を効果的に満たすことが示唆された。
論文 参考訳(メタデータ) (2024-02-03T05:14:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。