論文の概要: LSTM networks provide efficient cyanobacterial blooms forecasting even with incomplete spatio-temporal data
- arxiv url: http://arxiv.org/abs/2410.08237v1
- Date: Wed, 9 Oct 2024 15:13:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 04:26:09.315448
- Title: LSTM networks provide efficient cyanobacterial blooms forecasting even with incomplete spatio-temporal data
- Title(参考訳): 不完全な時空間データであっても効率的なシアノバクテリアの開花を予測できるLSTMネットワーク
- Authors: Claudia Fournier, Raul Fernandez-Fernandez, Samuel Cirés, José A. López-Orozco, Eva Besada-Portas, Antonio Quesada,
- Abstract要約: シアノバクテリアの早期警報システム(EWS)は、タイムリーな管理対策の実装を可能にする。
本稿では,6年間の非完全高周波時間データを用いたシアノバクテリアの開花予測に有効なEWSを提案する。
その結果,ハイブリッドシステムで評価した4日から28日間の7つの予測時間地平線について分析した。
- 参考スコア(独自算出の注目度): 2.5537500385691594
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cyanobacteria are the most frequent dominant species of algal blooms in inland waters, threatening ecosystem function and water quality, especially when toxin-producing strains predominate. Enhanced by anthropogenic activities and global warming, cyanobacterial blooms are expected to increase in frequency and global distribution. Early warning systems (EWS) for cyanobacterial blooms development allow timely implementation of management measures, reducing the risks associated to these blooms. In this paper, we propose an effective EWS for cyanobacterial bloom forecasting, which uses 6 years of incomplete high-frequency spatio-temporal data from multiparametric probes, including phycocyanin (PC) fluorescence as a proxy for cyanobacteria. A probe agnostic and replicable method is proposed to pre-process the data and to generate time series specific for cyanobacterial bloom forecasting. Using these pre-processed data, six different non-site/species-specific predictive models were compared including the autoregressive and multivariate versions of Linear Regression, Random Forest, and Long-Term Short-Term (LSTM) neural networks. Results were analyzed for seven forecasting time horizons ranging from 4 to 28 days evaluated with a hybrid system that combined regression metrics (MSE, R2, MAPE) for PC values, classification metrics (Accuracy, F1, Kappa) for a proposed alarm level of 10 ug PC/L, and a forecasting-specific metric to measure prediction improvement over the displaced signal (skill). The multivariate version of LSTM showed the best and most consistent results across all forecasting horizons and metrics, achieving accuracies of up to 90% in predicting the proposed PC alarm level. Additionally, positive skill values indicated its outstanding effectiveness to forecast cyanobacterial blooms from 16 to 28 days in advance.
- Abstract(参考訳): シアノバクテリウム(Cyanobacteria)は、特に毒素産生株が優占する場合に、生態系の機能と水質を脅かし、内陸海域で最も多く優占する藻類である。
人為的活動と地球温暖化により、シアノバクテリアの花は、頻度と世界的な分布が増加することが期待されている。
シアノバクテリアの早期警戒システム(EWS)は、管理対策のタイムリーな実施を可能にし、これらの発芽に関連するリスクを低減させる。
本稿では, シアノバクテリアの発芽予測に有効なEWSを提案し, フィコシアニン (PC) 蛍光をシアノバクテリアの代用剤として用いた, マルチパラメトリックプローブからの6年間の非完全高周波時空間データを用いた。
このデータを前処理し,シアノバクテリアの開花予測に特有の時系列を生成するために,プローブ非依存かつ複製可能な手法を提案する。
これらの前処理データを用いて、線形回帰(Linear Regression)、ランダムフォレスト(Random Forest)、長期短期ニューラルネットワーク(Long-Term Short-Term)の自己回帰型と多変量型を含む6種類の非サイト/種別予測モデルを比較した。
その結果,PC値の回帰指標 (MSE, R2, MAPE) と10 ug PC/Lのアラームレベルの分類指標 (Accuracy, F1, Kappa) と,変位した信号(スキル)の予測改善を計測する予測特異的指標を組み合わせたハイブリッドシステムを用いて,4日から28日間の予測時間地平線を解析した。
LSTMの多変量版は、全ての予測水平線と測度で最良の、最も一貫した結果を示し、提案したPCアラームレベルの予測において最大90%の精度を達成した。
また,前16日から28日間のシアノバクテリアの開花予測に有意な効果を示した。
関連論文リスト
- Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Harmful algal bloom forecasting. A comparison between stream and batch
learning [0.7067443325368975]
有害なアルガルブルーム(HAB)は公衆衛生と貝類産業にリスクをもたらす。
本研究では,有毒なジノフラゲレートの細胞数を予測する機械学習ワークフローを開発した。
モデルDoMEは最も効果的で解釈可能な予測器として登場し、他のアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2024-02-20T15:01:11Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Forecast reconciliation for vaccine supply chain optimization [61.13962963550403]
ワクチンサプライチェーン最適化は階層的な時系列予測の恩恵を受けることができる。
異なる階層レベルの予測は、上位レベルの予測が下位レベルの予測の総和と一致しないときに不整合となる。
我々は2010年から2021年にかけてのGSKの販売データを階層的時系列としてモデル化し,ワクチン販売予測問題に取り組む。
論文 参考訳(メタデータ) (2023-05-02T14:34:34Z) - Plant species richness prediction from DESIS hyperspectral data: A
comparison study on feature extraction procedures and regression models [1.8757823231879849]
本研究は,オーストラリア南東部の2種類の異なる生息地における植物種の豊かさを予測するためのDSISハイパースペクトルデータの有用性を定量的に評価した。
DESISスペクトル帯の相対的重要性分析により,赤縁,赤,青のスペクトル領域は,緑帯や近赤外帯よりも植物種の豊かさを予測する上で重要であることが示された。
論文 参考訳(メタデータ) (2023-01-05T05:33:56Z) - Interpretable Battery Cycle Life Range Prediction Using Early
Degradation Data at Cell Level [0.8137198664755597]
量的回帰フォレスト(QRF)モデルを導入し、不確かさを定量化してサイクル寿命範囲を予測する。
データ駆動方式は, 電池劣化機構の最小限の知識で, 電池サイクル寿命のポイント予測を行う手法として提案されている。
最終QRFモデルの解釈可能性については,2つの大域的モデルに依存しない手法を用いて検討した。
論文 参考訳(メタデータ) (2022-04-26T16:26:27Z) - Feature-weighted Stacking for Nonseasonal Time Series Forecasts: A Case
Study of the COVID-19 Epidemic Curves [0.0]
本研究では,非シーズン時間帯での利用可能性について,予測におけるアンサンブル手法について検討する。
予備予測段階における予測能力を証明する2つの予測モデルと2つのメタ機能からなる重畳アンサンブルを用いて遅延データ融合を提案する。
論文 参考訳(メタデータ) (2021-08-19T14:44:46Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z) - Comparison of Traditional and Hybrid Time Series Models for Forecasting
COVID-19 Cases [0.5849513679510832]
2019年12月の新型コロナウイルスの感染は、すでに世界中で数百万人を感染させ、拡大し続けています。
流行のカーブが平ら化し始めた直後、多くの国が再びケースの増加を目撃し始めている。
したがって、国家当局や保健当局に将来の時代の即時戦略を提供するには、時系列予測モデルの徹底的な分析が必要です。
論文 参考訳(メタデータ) (2021-05-05T14:56:27Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。