論文の概要: Exploring Natural Language-Based Strategies for Efficient Number Learning in Children through Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2410.08334v1
- Date: Thu, 10 Oct 2024 19:49:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 03:56:20.259101
- Title: Exploring Natural Language-Based Strategies for Efficient Number Learning in Children through Reinforcement Learning
- Title(参考訳): 強化学習による子どもの効率的な数学習のための自然言語ベース戦略の探索
- Authors: Tirthankar Mittra,
- Abstract要約: 本稿では,強化学習(RL)の枠組みを用いて,子どもが数を学ぶ方法を検討する。
最先端の強化学習モデルを用いて,様々な言語命令が数獲得に与える影響をシミュレートし,解析する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates how children learn numbers using the framework of reinforcement learning (RL), with a focus on the impact of language instructions. The motivation for using reinforcement learning stems from its parallels with psychological learning theories in controlled environments. By using state of the art deep reinforcement learning models, we simulate and analyze the effects of various forms of language instructions on number acquisition. Our findings indicate that certain linguistic structures more effectively improve numerical comprehension in RL agents. Additionally, our model predicts optimal sequences for presenting numbers to RL agents which enhance their speed of learning. This research provides valuable insights into the interplay between language and numerical cognition, with implications for both educational strategies and the development of artificial intelligence systems designed to support early childhood learning.
- Abstract(参考訳): 本稿では,言語指導の効果に着目した強化学習(RL)の枠組みを用いて,子どもが数字を学習する方法を検討する。
強化学習を利用する動機は、制御された環境における心理学的学習理論と類似している。
最先端の深層強化学習モデルを用いて,様々な言語命令が数獲得に与える影響をシミュレートし,解析する。
以上の結果から,特定の言語構造がRLエージェントの数値的理解をより効果的に向上することが示唆された。
さらに,本モデルでは,学習速度を向上するRLエージェントに数値を提示する最適なシーケンスを予測した。
この研究は、言語と数値認知の相互作用に関する貴重な洞察を与え、教育戦略と幼児期の学習を支援するために設計された人工知能システムの開発の両方に影響を及ぼす。
関連論文リスト
- Developmental Predictive Coding Model for Early Infancy Mono and Bilingual Vocal Continual Learning [69.8008228833895]
本稿では,連続学習機構を備えた小型生成ニューラルネットワークを提案する。
我々のモデルは解釈可能性を重視し,オンライン学習の利点を実証する。
論文 参考訳(メタデータ) (2024-12-23T10:23:47Z) - Learning Beyond Pattern Matching? Assaying Mathematical Understanding in LLMs [58.09253149867228]
本稿では,LLMのドメイン知識を,問題解決に必要な数学的スキルの理解を通じて評価する。
汎用科学アシスタントとしてLLMを用いることで, LLMの確率分布の変化を評価するためにtextitNTKEvalを提案する。
系統的な分析では、文脈内学習中にドメイン理解の証拠が見つかる。
ある命令チューニングは、異なるデータでのトレーニングに関係なく、同様のパフォーマンス変化をもたらし、異なるスキルに対するドメイン理解の欠如を示唆している。
論文 参考訳(メタデータ) (2024-05-24T12:04:54Z) - Babysit A Language Model From Scratch: Interactive Language Learning by Trials and Demonstrations [15.394018604836774]
本稿では, 学生の試行, 教師のデモンストレーション, 言語能力に配慮した報酬の3つの要素を組み込んだTnD学習フレームワークを提案する。
実験の結果,TnD手法は等数あるいは少人数の学生モデルの単語獲得を促進させることがわかった。
この結果から,対話型言語学習は,教師による実演や学生の試行を通じて,言語モデルにおける効率的な単語学習を促進することが示唆された。
論文 参考訳(メタデータ) (2024-05-22T16:57:02Z) - Language Evolution with Deep Learning [49.879239655532324]
計算モデリングは言語の出現の研究において重要な役割を担っている。
構造化言語の出現を誘発する可能性のある条件と学習プロセスをシミュレートすることを目的としている。
この章では、最近機械学習の分野に革命をもたらした別の種類の計算モデル、ディープ・ラーニング・モデルについて論じる。
論文 参考訳(メタデータ) (2024-03-18T16:52:54Z) - Enhancing Essay Scoring with Adversarial Weights Perturbation and
Metric-specific AttentionPooling [18.182517741584707]
本研究は, ELLsの筆記能力を評価するため, BERT関連技術の応用について検討した。
ELLの具体的なニーズに対処するために,最先端のニューラルネットワークモデルであるDeBERTaを提案する。
論文 参考訳(メタデータ) (2024-01-06T06:05:12Z) - CLIMB: Curriculum Learning for Infant-inspired Model Building [6.4766496232839685]
本稿では,BabyLM ChallengeのSTRICT-SMALLトラックへのチームの貢献について述べる。
課題は、1000万ワードの比較的小さなトレーニングデータセットを使用して、言語モデルをゼロからトレーニングすることである。
認知に動機づけられたカリキュラム学習の3つの変種を実験し,そのモデルの性能に及ぼす影響を解析した。
論文 参考訳(メタデータ) (2023-11-15T11:48:16Z) - Visual Grounding Helps Learn Word Meanings in Low-Data Regimes [47.7950860342515]
現代のニューラル言語モデル(LM)は、人間の文の生成と理解をモデル化するための強力なツールである。
しかし、これらの結果を得るためには、LMは明らかに非人間的な方法で訓練されなければならない。
より自然主義的に訓練されたモデルは、より人間らしい言語学習を示すのか?
本稿では,言語習得における重要なサブタスクである単語学習の文脈において,この問題を考察する。
論文 参考訳(メタデータ) (2023-10-20T03:33:36Z) - Retentive or Forgetful? Diving into the Knowledge Memorizing Mechanism
of Language Models [49.39276272693035]
大規模事前学習型言語モデルは、顕著な記憶能力を示している。
プレトレーニングのないバニラニューラルネットワークは、破滅的な忘れ物問題に悩まされていることが長年観察されてきた。
1)バニラ言語モデルは忘れがちである; 2)事前学習は暗黙の言語モデルにつながる; 3)知識の妥当性と多様化は記憶形成に大きな影響を及ぼす。
論文 参考訳(メタデータ) (2023-05-16T03:50:38Z) - A Cohesive Distillation Architecture for Neural Language Models [0.0]
自然言語処理の最近のトレンドは、言語モデル(LM)のサイズが指数関数的に増加することである。
本研究では,大規模モデルの効率的な代替手段を提供するために,知識蒸留法(KD)について検討する。
論文 参考訳(メタデータ) (2023-01-12T08:01:53Z) - What Artificial Neural Networks Can Tell Us About Human Language
Acquisition [47.761188531404066]
自然言語処理のための機械学習の急速な進歩は、人間がどのように言語を学ぶかについての議論を変革する可能性がある。
計算モデルによる学習可能性の関連性を高めるためには,人間に対して大きな優位性を持たず,モデル学習者を訓練する必要がある。
論文 参考訳(メタデータ) (2022-08-17T00:12:37Z) - Word Acquisition in Neural Language Models [0.38073142980733]
ニューラルネットワークモデルは,学習中に個々の単語を習得し,学習曲線を抽出し,600以上の単語の獲得年齢を推定する。
子どもや言語モデルでは, 具体性, 単語長, 語彙クラスの影響が顕著に異なることがわかった。
論文 参考訳(メタデータ) (2021-10-05T23:26:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。