論文の概要: Revealing COVID-19's Social Dynamics: Diachronic Semantic Analysis of Vaccine and Symptom Discourse on Twitter
- arxiv url: http://arxiv.org/abs/2410.08352v1
- Date: Thu, 10 Oct 2024 20:15:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 03:56:20.238595
- Title: Revealing COVID-19's Social Dynamics: Diachronic Semantic Analysis of Vaccine and Symptom Discourse on Twitter
- Title(参考訳): 新型コロナウイルスの社会的ダイナミクスの解明:Twitter上でのワクチンと症状のダイアクロニックセマンティック分析
- Authors: Zeqiang Wang, Jiageng Wu, Yuqi Wang, Wei Wang, Jie Yang, Jon Johnson, Nishanth Sastry, Suparna De,
- Abstract要約: 本稿では,あらかじめ定義されたアンカー語を使わずに,ソーシャルメディアデータ中の縦長的な意味変化を捉えるために,教師なしの動的単語埋め込み手法を提案する。
新型コロナウイルス(COVID-19)の大規模なTwitterデータセットに基づいて評価されたこの手法は、異なるパンデミック段階におけるワクチンおよび症状関連エンティティのセマンティックな進化パターンを明らかにする。
- 参考スコア(独自算出の注目度): 12.75089285888253
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Social media is recognized as an important source for deriving insights into public opinion dynamics and social impacts due to the vast textual data generated daily and the 'unconstrained' behavior of people interacting on these platforms. However, such analyses prove challenging due to the semantic shift phenomenon, where word meanings evolve over time. This paper proposes an unsupervised dynamic word embedding method to capture longitudinal semantic shifts in social media data without predefined anchor words. The method leverages word co-occurrence statistics and dynamic updating to adapt embeddings over time, addressing the challenges of data sparseness, imbalanced distributions, and synergistic semantic effects. Evaluated on a large COVID-19 Twitter dataset, the method reveals semantic evolution patterns of vaccine- and symptom-related entities across different pandemic stages, and their potential correlations with real-world statistics. Our key contributions include the dynamic embedding technique, empirical analysis of COVID-19 semantic shifts, and discussions on enhancing semantic shift modeling for computational social science research. This study enables capturing longitudinal semantic dynamics on social media to understand public discourse and collective phenomena.
- Abstract(参考訳): ソーシャルメディアは、日々発生している膨大なテキストデータと、これらのプラットフォームで交流する人々の「拘束されない」行動によって、世論のダイナミクスや社会的影響に関する洞察を導き出す重要な情報源として認識されている。
しかし、このような分析は、単語の意味が時間とともに進化する意味変化現象によって困難であることが証明されている。
本稿では,あらかじめ定義されたアンカー語を使わずにソーシャルメディアデータ中の縦長的な意味変化を捉えるための,教師なし動的単語埋め込み手法を提案する。
この手法は単語共起統計と動的更新を利用して、時間とともに埋め込みを適応し、データのスパース性、不均衡分布、相乗的意味効果の課題に対処する。
新型コロナウイルス(COVID-19)の大規模なTwitterデータセットに基づいて評価されたこの手法は、異なるパンデミックステージにおけるワクチンと症状関連エンティティのセマンティックな進化パターンと、実際の統計との潜在的な相関を明らかにする。
我々の重要な貢献は、動的埋め込み技術、COVID-19セマンティックシフトの実証分析、および計算社会科学研究のためのセマンティックシフトモデリングの強化に関する議論である。
本研究は,ソーシャルメディア上での縦断的セマンティック・ダイナミクスを捉え,公開談話や集合現象の理解を可能にする。
関連論文リスト
- Graph Neural Networks for Antisocial Behavior Detection on Twitter [0.0]
反社会的行動のソーシャルメディアの復活は、ステレオタイプ的信念や個人や社会グループに対する憎悪的なコメントに下向きのスパイラルをもたらした。
大量のグラフ構造化データに使用されるグラフニューラルネットワークの進歩は、ソーシャルメディアプラットフォームにおけるコミュニケーションのメディア化の将来への期待を高めている。
グラフ畳み込みデータに基づくアプローチを用いて、異種データ間の依存関係をよりよく把握した。
論文 参考訳(メタデータ) (2023-12-28T00:25:12Z) - Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
誤報に対する感受性は、観測不可能な不検証の主張に対する信念の度合いを記述している。
既存の感受性研究は、自己報告された信念に大きく依存している。
本稿では,ユーザの潜在感受性レベルをモデル化するための計算手法を提案する。
論文 参考訳(メタデータ) (2023-11-16T07:22:56Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSenseは、既存のソーシャルネットワーク上に信念中心のグラフを誘導するフレームワークであり、グラフベースの伝播によって社会的ダイナミクスを捉える。
本手法は,ゼロショット設定と教師あり設定の両方に対する実験的な評価において,既存の最先端技術を超えている。
論文 参考訳(メタデータ) (2023-10-20T06:17:02Z) - Time Will Change Things: An Empirical Study on Dynamic Language
Understanding in Social Media Classification [5.075802830306718]
我々は、実験的にソーシャルメディアのNLUを動的に研究し、モデルが過去のデータに基づいてトレーニングされ、将来のテストが行われる。
自動エンコーディングと擬似ラベルが協調して、動的性の最良の堅牢性を示すことを示す。
論文 参考訳(メタデータ) (2022-10-06T12:18:28Z) - Aggression and "hate speech" in communication of media users: analysis
of control capabilities [50.591267188664666]
著者らは新メディアにおける利用者の相互影響の可能性を検討した。
新型コロナウイルス(COVID-19)対策として、緊急の社会問題について議論する際、攻撃やヘイトスピーチのレベルが高いことが分かった。
結果は、現代のデジタル環境におけるメディアコンテンツの開発に有用である。
論文 参考訳(メタデータ) (2022-08-25T15:53:32Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
本研究では,先行・知覚的信号の精度を変化させることで,個人・社会的タスク設定の両方で人間の行動データを再現可能であることを示す。
トレーニングされたネットワークの神経活性化トレースの分析は、情報が個人や社会的条件のネットワークにおいて、根本的に異なる方法でコード化されていることを示す。
論文 参考訳(メタデータ) (2022-03-03T17:19:12Z) - Dynamic Social Media Monitoring for Fast-Evolving Online Discussions [39.81957479388813]
高速なオンライン議論における関連情報のカバレッジを最大化するための動的キーワード検索手法を提案する。
単語埋め込みモデルを用いてキーワードと予測モデル間の意味関係を表現し、将来の時系列を予測する。
我々は,最近の就任式に関するダイナミックな会話を取り上げ,動的データ収集システムをテストするために,現代のケーススタディを実施している。
論文 参考訳(メタデータ) (2021-02-24T23:00:42Z) - Topic, Sentiment and Impact Analysis: COVID19 Information Seeking on
Social Media [1.6328866317851185]
この研究は、COVID19に関連するオーストラリアの球面の大規模な時空間的ツイートデータセットを分析した。
この手法にはボリューム分析、ダイナミックトピックモデリング、感情検出、セマンティックブランドスコアが含まれていた。
得られた知見は、政府報告事例のような独立に観察された現象と比較される。
論文 参考訳(メタデータ) (2020-08-28T02:03:18Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z) - Interactions in information spread: quantification and interpretation
using stochastic block models [3.5450828190071655]
ソーシャルネットワークでは、ユーザーの行動は、対話する人々、フィード内のニュース、トレンドトピックから生じる。
本稿では、エンティティ間のインタラクションの役割を調査する新しいモデル、Interactive Mixed Membership Block Model (IMMSBM)を提案する。
推論タスクでは、それらを考慮すれば、結果の確率の最大150%の非相互作用モデルに対する平均的な相対的な変化につながる。
論文 参考訳(メタデータ) (2020-04-09T14:22:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。