Assessing Privacy Policies with AI: Ethical, Legal, and Technical Challenges
- URL: http://arxiv.org/abs/2410.08381v1
- Date: Thu, 10 Oct 2024 21:36:35 GMT
- Title: Assessing Privacy Policies with AI: Ethical, Legal, and Technical Challenges
- Authors: Irem Aydin, Hermann Diebel-Fischer, Vincent Freiberger, Julia Möller-Klapperich, Erik Buchmann, Michael Färber, Anne Lauber-Rönsberg, Birte Platow,
- Abstract summary: Large Language Models (LLMs) can be used to assess privacy policies for users automatically.
We explore the challenges of this approach in three pillars, namely technical feasibility, ethical implications, and legal compatibility.
Our findings aim to identify potential for future research, and to foster a discussion on the use of LLM technologies.
- Score: 6.916147439085307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing use of Machine Learning and Artificial Intelligence (AI), particularly Large Language Models (LLMs) like OpenAI's GPT series, leads to disruptive changes across organizations. At the same time, there is a growing concern about how organizations handle personal data. Thus, privacy policies are essential for transparency in data processing practices, enabling users to assess privacy risks. However, these policies are often long and complex. This might lead to user confusion and consent fatigue, where users accept data practices against their interests, and abusive or unfair practices might go unnoticed. LLMss can be used to assess privacy policies for users automatically. In this interdisciplinary work, we explore the challenges of this approach in three pillars, namely technical feasibility, ethical implications, and legal compatibility of using LLMs to assess privacy policies. Our findings aim to identify potential for future research, and to foster a discussion on the use of LLM technologies for enabling users to fulfil their important role as decision-makers in a constantly developing AI-driven digital economy.
Related papers
- Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
Mental illness is a widespread and debilitating condition with substantial societal and personal costs.
Recent advances in Artificial Intelligence (AI) hold great potential for recognizing and addressing conditions such as depression, anxiety disorder, bipolar disorder, schizophrenia, and post-traumatic stress disorder.
Privacy concerns, including the risk of sensitive data leakage from datasets and trained models, remain a critical barrier to deploying these AI systems in real-world clinical settings.
arXiv Detail & Related papers (2025-02-01T15:10:02Z) - Toward Ethical AI: A Qualitative Analysis of Stakeholder Perspectives [0.0]
This study explores stakeholder perspectives on privacy in AI systems, focusing on educators, parents, and AI professionals.
Using qualitative analysis of survey responses from 227 participants, the research identifies key privacy risks, including data breaches, ethical misuse, and excessive data collection.
The findings provide actionable insights into balancing the benefits of AI with robust privacy protections.
arXiv Detail & Related papers (2025-01-23T02:06:25Z) - Transparency, Security, and Workplace Training & Awareness in the Age of Generative AI [0.0]
As AI technologies advance, ethical considerations, transparency, data privacy, and their impact on human labor intersect with the drive for innovation and efficiency.
Our research explores publicly accessible large language models (LLMs) that often operate on the periphery, away from mainstream scrutiny.
Specifically, we examine Gab AI, a platform that centers around unrestricted communication and privacy, allowing users to interact freely without censorship.
arXiv Detail & Related papers (2024-12-19T17:40:58Z) - Privacy-Preserving Customer Support: A Framework for Secure and Scalable Interactions [0.0]
This paper introduces the Privacy-Preserving Zero-Shot Learning (PP-ZSL) framework, a novel approach leveraging large language models (LLMs) in a zero-shot learning mode.
Unlike conventional machine learning methods, PP-ZSL eliminates the need for local training on sensitive data by utilizing pre-trained LLMs to generate responses directly.
The framework incorporates real-time data anonymization to redact or mask sensitive information, retrieval-augmented generation (RAG) for domain-specific query resolution, and robust post-processing to ensure compliance with regulatory standards.
arXiv Detail & Related papers (2024-12-10T17:20:47Z) - How Privacy-Savvy Are Large Language Models? A Case Study on Compliance and Privacy Technical Review [15.15468770348023]
We evaluate large language models' performance in privacy-related tasks such as privacy information extraction (PIE), legal and regulatory key point detection (KPD), and question answering (QA)
Through an empirical assessment, we investigate the capacity of several prominent LLMs, including BERT, GPT-3.5, GPT-4, and custom models, in executing privacy compliance checks and technical privacy reviews.
While LLMs show promise in automating privacy reviews and identifying regulatory discrepancies, significant gaps persist in their ability to fully comply with evolving legal standards.
arXiv Detail & Related papers (2024-09-04T01:51:37Z) - Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
Security measures such as anonymization are needed to protect individuals' privacy.
Within our study, we conducted expert interviews to gain insights into practices in the field.
We survey privacy-enhancing methods in use, which generally do not comply with state-of-the-art standards of differential privacy.
arXiv Detail & Related papers (2024-07-04T08:29:27Z) - Experts-in-the-Loop: Establishing an Effective Workflow in Crafting
Privacy Q&A [0.0]
We propose a dynamic workflow for transforming privacy policies into privacy question-and-answer (Q&A) pairs.
Thereby, we facilitate interdisciplinary collaboration among legal experts and conversation designers.
Our proposed workflow underscores continuous improvement and monitoring throughout the construction of privacy Q&As.
arXiv Detail & Related papers (2023-11-18T20:32:59Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
Federated Learning (FL) allows the data owner to maintain data governance and perform model training locally without having to share their data.
FL and related techniques are often described as privacy-preserving.
We explain why this term is not appropriate and outline the risks associated with over-reliance on protocols that were not designed with formal definitions of privacy in mind.
arXiv Detail & Related papers (2021-12-21T08:44:05Z) - PCAL: A Privacy-preserving Intelligent Credit Risk Modeling Framework
Based on Adversarial Learning [111.19576084222345]
This paper proposes a framework of Privacy-preserving Credit risk modeling based on Adversarial Learning (PCAL)
PCAL aims to mask the private information inside the original dataset, while maintaining the important utility information for the target prediction task performance.
Results indicate that PCAL can learn an effective, privacy-free representation from user data, providing a solid foundation towards privacy-preserving machine learning for credit risk analysis.
arXiv Detail & Related papers (2020-10-06T07:04:59Z) - A vision for global privacy bridges: Technical and legal measures for
international data markets [77.34726150561087]
Despite data protection laws and an acknowledged right to privacy, trading personal information has become a business equated with "trading oil"
An open conflict is arising between business demands for data and a desire for privacy.
We propose and test a vision of a personal information market with privacy.
arXiv Detail & Related papers (2020-05-13T13:55:50Z) - Beyond privacy regulations: an ethical approach to data usage in
transportation [64.86110095869176]
We describe how Federated Machine Learning can be applied to the transportation sector.
We see Federated Learning as a method that enables us to process privacy-sensitive data, while respecting customer's privacy.
arXiv Detail & Related papers (2020-04-01T15:10:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.