The Effects of Hallucinations in Synthetic Training Data for Relation Extraction
- URL: http://arxiv.org/abs/2410.08393v1
- Date: Thu, 10 Oct 2024 22:00:16 GMT
- Title: The Effects of Hallucinations in Synthetic Training Data for Relation Extraction
- Authors: Steven Rogulsky, Nicholas Popovic, Michael Färber,
- Abstract summary: We study the effects of hallucinations on the performance of relation extraction on the document and sentence levels.
Hallucinations considerably compromise the ability of models to extract relations from text.
We develop methods for the detection of hallucinations to improve data quality and model performance.
- Score: 11.046770690972723
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Relation extraction is crucial for constructing knowledge graphs, with large high-quality datasets serving as the foundation for training, fine-tuning, and evaluating models. Generative data augmentation (GDA) is a common approach to expand such datasets. However, this approach often introduces hallucinations, such as spurious facts, whose impact on relation extraction remains underexplored. In this paper, we examine the effects of hallucinations on the performance of relation extraction on the document and sentence levels. Our empirical study reveals that hallucinations considerably compromise the ability of models to extract relations from text, with recall reductions between 19.1% and 39.2%. We identify that relevant hallucinations impair the model's performance, while irrelevant hallucinations have a minimal impact. Additionally, we develop methods for the detection of hallucinations to improve data quality and model performance. Our approaches successfully classify texts as either 'hallucinated' or 'clean,' achieving high F1-scores of 83.8% and 92.2%. These methods not only assist in removing hallucinations but also help in estimating their prevalence within datasets, which is crucial for selecting high-quality data. Overall, our work confirms the profound impact of relevant hallucinations on the effectiveness of relation extraction models.
Related papers
- KSHSeek: Data-Driven Approaches to Mitigating and Detecting Knowledge-Shortcut Hallucinations in Generative Models [17.435794516702256]
Large language models (LLMs) have significantly advanced the development of natural language processing (NLP)
Model hallucinations remain a major challenge in natural language generation (NLG) tasks due to their complex causes.
This work introduces a new paradigm for mitigating specific hallucination issues in generative models, enhancing their robustness and reliability in real-world applications.
arXiv Detail & Related papers (2025-03-25T09:18:27Z) - Pre-Training Multimodal Hallucination Detectors with Corrupted Grounding Data [4.636499986218049]
Multimodal language models can exhibit hallucinations in their outputs, which limits their reliability.
We propose an approach to improve the sample efficiency of these models by creating corrupted grounding data.
arXiv Detail & Related papers (2024-08-30T20:11:00Z) - Reefknot: A Comprehensive Benchmark for Relation Hallucination Evaluation, Analysis and Mitigation in Multimodal Large Language Models [13.48296910438554]
Hallucination issues persistently plagued current multimodal large language models (MLLMs)
We introduce Reefknot, a benchmark specifically targeting relation hallucinations, consisting of over 20,000 samples derived from real-world scenarios.
Our comparative evaluation across three distinct tasks revealed a substantial shortcoming in the capabilities of current MLLMs to mitigate relation hallucinations.
arXiv Detail & Related papers (2024-08-18T10:07:02Z) - Synthetic Simplicity: Unveiling Bias in Medical Data Augmentation [0.7499722271664144]
Synthetic data is becoming increasingly integral in data-scarce fields such as medical imaging.
downstream neural networks often exploit spurious distinctions between real and synthetic data when there is a strong correlation between the data source and the task label.
This exploitation manifests as textitsimplicity bias, where models overly rely on superficial features rather than genuine task-related complexities.
arXiv Detail & Related papers (2024-07-31T15:14:17Z) - Prescribing the Right Remedy: Mitigating Hallucinations in Large Vision-Language Models via Targeted Instruction Tuning [15.156359255401812]
We propose a targeted instruction data generation framework named DFTG that tailored to the hallucination specificity of different models.
The experimental results on hallucination benchmarks demonstrate that the targeted instruction data generated by our method are more effective in mitigating hallucinations compared to previous datasets.
arXiv Detail & Related papers (2024-04-16T07:14:32Z) - Quantity Matters: Towards Assessing and Mitigating Number Hallucination in Large Vision-Language Models [57.42800112251644]
We focus on a specific type of hallucination-number hallucination, referring to models incorrectly identifying the number of certain objects in pictures.
We devise a training approach aimed at improving consistency to reduce number hallucinations, which leads to an 8% enhancement in performance over direct finetuning methods.
arXiv Detail & Related papers (2024-03-03T02:31:11Z) - A Data-Centric Approach To Generate Faithful and High Quality Patient Summaries with Large Language Models [11.218649399559691]
Fine-tuning on hallucination-free data effectively reduces hallucinations from 2.60 to 1.55 per summary for Llama 2.
We find that common quantitative metrics do not correlate well with faithfulness and quality.
arXiv Detail & Related papers (2024-02-23T16:32:28Z) - HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data [102.56792377624927]
hallucinations inherent in machine-generated data remain under-explored.
We present a novel hallucination detection and elimination framework, HalluciDoctor, based on the cross-checking paradigm.
Our method successfully mitigates 44.6% hallucinations relatively and maintains competitive performance compared to LLaVA.
arXiv Detail & Related papers (2023-11-22T04:52:58Z) - A Stitch in Time Saves Nine: Detecting and Mitigating Hallucinations of
LLMs by Validating Low-Confidence Generation [76.34411067299331]
Large language models often tend to 'hallucinate' which critically hampers their reliability.
We propose an approach that actively detects and mitigates hallucinations during the generation process.
We show that the proposed active detection and mitigation approach successfully reduces the hallucinations of the GPT-3.5 model from 47.5% to 14.5% on average.
arXiv Detail & Related papers (2023-07-08T14:25:57Z) - CausalDialogue: Modeling Utterance-level Causality in Conversations [83.03604651485327]
We have compiled and expanded upon a new dataset called CausalDialogue through crowd-sourcing.
This dataset includes multiple cause-effect pairs within a directed acyclic graph (DAG) structure.
We propose a causality-enhanced method called Exponential Average Treatment Effect (ExMATE) to enhance the impact of causality at the utterance level in training neural conversation models.
arXiv Detail & Related papers (2022-12-20T18:31:50Z) - Mutual Information Alleviates Hallucinations in Abstractive
Summarization [73.48162198041884]
We find a simple criterion under which models are significantly more likely to assign more probability to hallucinated content during generation: high model uncertainty.
This finding offers a potential explanation for hallucinations: models default to favoring text with high marginal probability, when uncertain about a continuation.
We propose a decoding strategy that switches to optimizing for pointwise mutual information of the source and target token--rather than purely the probability of the target token--when the model exhibits uncertainty.
arXiv Detail & Related papers (2022-10-24T13:30:54Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.