論文の概要: Bilinear MLPs enable weight-based mechanistic interpretability
- arxiv url: http://arxiv.org/abs/2410.08417v1
- Date: Thu, 10 Oct 2024 23:22:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 03:26:42.327259
- Title: Bilinear MLPs enable weight-based mechanistic interpretability
- Title(参考訳): バイリニアMLPは重みに基づく機械的解釈性を実現する
- Authors: Michael T. Pearce, Thomas Dooms, Alice Rigg, Jose M. Oramas, Lee Sharkey,
- Abstract要約: バイリニア層は、現在のアクティベーション関数の解釈可能なドロップイン置換として機能する。
重みに基づく解釈性は、ディープラーニングモデルを理解する上で有効である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A mechanistic understanding of how MLPs do computation in deep neural networks remains elusive. Current interpretability work can extract features from hidden activations over an input dataset but generally cannot explain how MLP weights construct features. One challenge is that element-wise nonlinearities introduce higher-order interactions and make it difficult to trace computations through the MLP layer. In this paper, we analyze bilinear MLPs, a type of Gated Linear Unit (GLU) without any element-wise nonlinearity that nevertheless achieves competitive performance. Bilinear MLPs can be fully expressed in terms of linear operations using a third-order tensor, allowing flexible analysis of the weights. Analyzing the spectra of bilinear MLP weights using eigendecomposition reveals interpretable low-rank structure across toy tasks, image classification, and language modeling. We use this understanding to craft adversarial examples, uncover overfitting, and identify small language model circuits directly from the weights alone. Our results demonstrate that bilinear layers serve as an interpretable drop-in replacement for current activation functions and that weight-based interpretability is viable for understanding deep-learning models.
- Abstract(参考訳): MLPがディープニューラルネットワークでどのように計算を行うかについての機械的理解はいまだに解明されていない。
現在の解釈可能性の研究は、入力データセット上で隠れたアクティベーションから特徴を抽出することができるが、一般的にMDPの重みがどのように特徴を構成するかを説明することはできない。
1つの課題は、要素的非線形性は高次相互作用を導入し、MLP層を通して計算をトレースすることを困難にすることである。
本稿では,GLU (Gated Linear Unit) の一種であるバイリニアMLPの解析を行う。
双線型 MLP は3階テンソルを用いて線形演算で完全に表現することができ、重みの柔軟な解析が可能となる。
固有分解法による双線形MLP重みのスペクトル分析により、おもちゃの作業、画像分類、言語モデリングにまたがる解釈可能な低ランク構造が明らかとなる。
この理解を用いて、敵の例を作成し、オーバーフィッティングを発見し、ウェイトのみから直接小さな言語モデル回路を同定する。
以上の結果から,バイリニア層は現在のアクティベーション関数の解釈可能な代替として機能し,重みに基づく解釈性はディープラーニングモデルの理解に有効であることが示唆された。
関連論文リスト
- Extrapolative ML Models for Copolymers [1.901715290314837]
機械学習モデルは、材料特性の予測に徐々に使われてきた。
これらのモデルは本質的に補間的であり、物質の既知の特性範囲外の候補を探索するための有効性は未解決である。
本稿では,MLモデルの外挿能力,トレーニングデータセットのサイズと範囲,学習アプローチとの関係について検討する。
論文 参考訳(メタデータ) (2024-09-15T11:02:01Z) - Interpreting and Improving Large Language Models in Arithmetic Calculation [72.19753146621429]
大規模言語モデル(LLM)は、多くのアプリケーションにまたがる顕著な可能性を示している。
本研究では,LLMが計算を行う特定のメカニズムを明らかにする。
LLMの計算性能を高めるために、これらの必須ヘッド/MLPを選択的に微調整する潜在的な利点について検討する。
論文 参考訳(メタデータ) (2024-09-03T07:01:46Z) - Weight-based Decomposition: A Case for Bilinear MLPs [0.0]
GLU(Gated Linear Units)は、現代の基礎モデルにおいて一般的なビルディングブロックとなっている。
Bilinear 層は "gate" の非線形性を低下させるが、他の GLU に匹敵する性能を持つ。
双線型テンソルを相互作用する固有ベクトルの集合に分解する手法を開発する。
論文 参考訳(メタデータ) (2024-06-06T10:46:51Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - MLPs Compass: What is learned when MLPs are combined with PLMs? [20.003022732050994]
堅牢な構造キャプチャ機能を実現するマルチレイヤ・パーセプトロン(MLP)モジュールは、グラフニューラルネットワーク(GNN)よりも優れています。
本稿は,PLMの言語情報取得能力が向上するかどうかを定量化することを目的とする。
論文 参考訳(メタデータ) (2024-01-03T11:06:01Z) - A technical note on bilinear layers for interpretability [0.0]
双線型層は数学的に解析し易いタイプの層である。
バイリニア層に対するこの表現を変換回路の数学的枠組みに統合することができる。
論文 参考訳(メタデータ) (2023-05-05T11:56:26Z) - Understanding the Role of Nonlinearity in Training Dynamics of
Contrastive Learning [37.27098255569438]
本研究では,1層および2層非線形ネットワーク上でのコントラスト学習(CL)の学習力学における非線形性の役割について検討する。
非線形性の存在は1層設定においても多くの局所最適性をもたらすことを示す。
グローバルレベルパターンの観点から識別可能な局所パターンを優先的に学習する。
論文 参考訳(メタデータ) (2022-06-02T23:52:35Z) - Efficient Language Modeling with Sparse all-MLP [53.81435968051093]
すべてのMLPは、言語モデリングにおいてTransformerと一致するが、下流タスクではまだ遅れている。
特徴量と入力量の両方でMoE(Mix-of-Experts)を混合したスパースオールMLPを提案する。
6つの下流タスクにおいて、ゼロショットのインコンテキスト学習性能を評価し、トランスフォーマーベースのMoEや高密度トランスフォーマーを上回る結果を得た。
論文 参考訳(メタデータ) (2022-03-14T04:32:19Z) - Geometric and Physical Quantities improve E(3) Equivariant Message
Passing [59.98327062664975]
等変グラフネットワークを一般化する等変グラフニューラルネットワーク(SEGNN)を提案する。
このモデルは、ステアブルで構成され、メッセージと更新機能の両方に幾何学的および物理的情報を組み込むことができる。
計算物理学と化学におけるいくつかの課題において,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2021-10-06T16:34:26Z) - How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks [80.55378250013496]
勾配勾配降下法によりトレーニングされたニューラルネットワークが、トレーニング分布の支持の外で学んだことを外挿する方法について検討する。
グラフニューラルネットワーク(GNN)は、より複雑なタスクでいくつかの成功を収めている。
論文 参考訳(メタデータ) (2020-09-24T17:48:59Z) - Nonlinear ISA with Auxiliary Variables for Learning Speech
Representations [51.9516685516144]
補助変数の存在下では非線型独立部分空間解析(ISA)の理論的枠組みを導入する。
部分空間が独立な教師なし音声表現を学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-25T14:53:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。