論文の概要: SoK: Software Compartmentalization
- arxiv url: http://arxiv.org/abs/2410.08434v1
- Date: Fri, 11 Oct 2024 00:38:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 03:26:42.299868
- Title: SoK: Software Compartmentalization
- Title(参考訳): SoK: ソフトウェア比較
- Authors: Hugo Lefeuvre, Nathan Dautenhahn, David Chisnall, Pierre Olivier,
- Abstract要約: 大規模なシステムを小さなコンポーネントに分解することは、エクスプロイトの影響を最小限に抑える効果的な方法として長年認識されてきた。
歴史的ルーツ、実証された利益、そして学術と産業における多くの研究努力にもかかわらず、ソフトウェアの区画化は依然として主流ではない。
本稿では,構成化アプローチの体系的分析,比較,指示のための統一モデルを提案する。
- 参考スコア(独自算出の注目度): 3.058923790501231
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Decomposing large systems into smaller components with limited privileges has long been recognized as an effective means to minimize the impact of exploits. Despite historical roots, demonstrated benefits, and a plethora of research efforts in academia and industry, the compartmentalization of software is still not a mainstream practice. This paper investigates why, and how this status quo can be improved. Noting that existing approaches are fraught with inconsistencies in terminology and analytical methods, we propose a unified model for the systematic analysis, comparison, and directing of compartmentalization approaches. We use this model to review 211 research efforts and analyze 61 mainstream compartmentalized systems, confronting them to understand the limitations of both research and production works. Among others, our findings reveal that mainstream efforts largely rely on manual methods, custom abstractions, and legacy mechanisms, poles apart from recent research. We conclude with recommendations: compartmentalization should be solved holistically; progress is needed towards simplifying the definition of compartmentalization policies; towards better challenging our threat models in the light of confused deputies and hardware limitations; as well as towards bridging the gaps we pinpoint between research and mainstream needs. This paper not only maps the historical and current landscape of compartmentalization, but also sets forth a framework to foster their evolution and adoption.
- Abstract(参考訳): 大きなシステムを限られた特権を持つ小さなコンポーネントに分解することは、エクスプロイトの影響を最小限に抑える効果的な方法として長年認識されてきた。
歴史的ルーツ、実証された利益、そして学術と産業における多くの研究努力にもかかわらず、ソフトウェアの区画化は依然として主流ではない。
本稿では,この現状をどう改善できるかを考察する。
既存の手法が用語学や分析手法の不整合に悩まされていることに留意し, 構成化手法の体系的分析, 比較, 指示のための統一モデルを提案する。
このモデルを用いて、211の研究成果をレビューし、61の主流のコンパートナライズドシステムを分析し、研究と生産の両方の限界を理解する。
中でも本研究は,手作業の方法,カスタム抽象化,レガシメカニズムに大きく依存していることが明らかとなった。
分断化は、全体論的に解決されるべきである; 分断化ポリシーの定義を単純化するためには進歩が必要である; 混乱した議題とハードウェアの制限から脅威モデルに挑戦するためには、研究と主流のニーズの間のギャップを埋めることが必要である。
本稿では, 歴史的, 現状の区画化の展望を地図化するとともに, それらの進化と導入を促進する枠組みを策定する。
関連論文リスト
- Towards a Unified View of Preference Learning for Large Language Models: A Survey [88.66719962576005]
大きな言語モデル(LLM)は、非常に強力な能力を示す。
成功するための重要な要因の1つは、LLMの出力を人間の好みに合わせることである。
選好学習のすべての戦略を、モデル、データ、フィードバック、アルゴリズムの4つの構成要素に分解する。
論文 参考訳(メタデータ) (2024-09-04T15:11:55Z) - Resilience of Deep Learning applications: a systematic literature review of analysis and hardening techniques [3.265458968159693]
このレビューは、2019年1月から2024年3月までに発行された220の科学論文に基づいている。
著者らは、研究の類似点と特異点を解釈し、強調するために分類フレームワークを採用している。
論文 参考訳(メタデータ) (2023-09-27T19:22:19Z) - Endogenous Macrodynamics in Algorithmic Recourse [52.87956177581998]
対実説明(CE)とアルゴリズム・リコース(AR)に関する既存の研究は、静的環境における個人に主に焦点を当ててきた。
既存の方法論の多くは、一般化されたフレームワークによってまとめて記述できることを示す。
次に、既存のフレームワークは、グループレベルでの言論の内在的ダイナミクスを研究する際にのみ明らかとなるような、隠された対外的関係のコストを考慮に入れていないと論じる。
論文 参考訳(メタデータ) (2023-08-16T07:36:58Z) - REX: Rapid Exploration and eXploitation for AI Agents [103.68453326880456]
本稿では、REXと呼ばれるAIエージェントのための高速探索およびeXploitationのための改良されたアプローチを提案する。
REXは追加の報酬層を導入し、アッパー信頼境界(UCB)スコアに似た概念を統合し、より堅牢で効率的なAIエージェントのパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-07-18T04:26:33Z) - GLUECons: A Generic Benchmark for Learning Under Constraints [102.78051169725455]
本研究では,自然言語処理とコンピュータビジョンの分野における9つのタスクの集合であるベンチマークを作成する。
外部知識を制約としてモデル化し、各タスクの制約のソースを特定し、これらの制約を使用するさまざまなモデルを実装します。
論文 参考訳(メタデータ) (2023-02-16T16:45:36Z) - Deep Intrinsically Motivated Exploration in Continuous Control [0.0]
連続的なシステムでは、ネットワークのパラメータや選択されたアクションがランダムノイズによって乱されるような、間接的でない戦略によって探索が行われることが多い。
我々は、動物モチベーションシステムに関する既存の理論を強化学習パラダイムに適応させ、新しい探究戦略を導入する。
我々のフレームワークは、より大きく多様な状態空間に拡張し、ベースラインを劇的に改善し、間接的でない戦略を大幅に上回る。
論文 参考訳(メタデータ) (2022-10-01T14:52:16Z) - f-Domain-Adversarial Learning: Theory and Algorithms [82.97698406515667]
教師なしのドメイン適応は、トレーニング中、ターゲットドメイン内のラベルなしデータにアクセス可能な、多くの機械学習アプリケーションで使用されている。
領域適応のための新しい一般化法を導出し、f-発散体の変分的特徴に基づく分布間の相違性の新しい尺度を利用する。
論文 参考訳(メタデータ) (2021-06-21T18:21:09Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
社会的関連性の高い領域の決定に影響を与える洗練された統計モデルの使用が増加しています。
多くの政府、機関、企業は、アウトプットが人間の解釈可能な方法で説明しにくいため、採用に消極的です。
近年,機械学習モデルに解釈可能な説明を提供する方法として,学術文献が多数提案されている。
論文 参考訳(メタデータ) (2021-04-09T01:46:34Z) - Metrics and continuity in reinforcement learning [34.10996560464196]
メトリクスのレンズを通してトポロジを定義するために統一的な定式化を導入する。
我々はこれらの指標の階層を確立し、マルコフ決定過程にその理論的意味を実証する。
考察した指標間の差異を示す実証的な評価で理論結果を補完する。
論文 参考訳(メタデータ) (2021-02-02T14:30:41Z) - Unsupervised Domain Adaptation in Semantic Segmentation: a Review [22.366638308792734]
本研究の目的は, セマンティックセグメンテーションのための深層ネットワークのUnsupervised Domain Adaptation (UDA) の最近の進歩について概説することである。
論文 参考訳(メタデータ) (2020-05-21T20:10:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。