論文の概要: Personalized Item Representations in Federated Multimodal Recommendation
- arxiv url: http://arxiv.org/abs/2410.08478v2
- Date: Mon, 14 Oct 2024 07:55:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 23:34:54.178937
- Title: Personalized Item Representations in Federated Multimodal Recommendation
- Title(参考訳): フェデレーション型マルチモーダルレコメンデーションにおけるパーソナライズされた項目表現
- Authors: Zhiwei Li, Guodong Long, Jing Jiang, Chengqi Zhang,
- Abstract要約: FedMRと呼ばれるFederated Multimodal Recommendation Systemは、マルチモーダルアイテムデータをエンコードする。
FedMRは既存のIDベースのフェデレーションレコメンデーションシステムと互換性がある。
4つの実世界のマルチモーダルデータセットの実験は、FedMRの有効性を示している。
- 参考スコア(独自算出の注目度): 37.52127488593226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated recommendation systems are essential for providing personalized recommendations while protecting user privacy. However, current methods mainly rely on ID-based item embeddings, neglecting the rich multimodal information of items. To address this, we propose a Federated Multimodal Recommendation System, called FedMR. FedMR uses a foundation model on the server to encode multimodal item data, such as images and text. To handle data heterogeneity caused by user preference differences, FedMR introduces a Mixing Feature Fusion Module on each client, which adjusts fusion strategy weights based on user interaction history to generate personalized item representations that capture users' fine-grained preferences. FedMR is compatible with existing ID-based federated recommendation systems, improving performance without modifying the original framework. Experiments on four real-world multimodal datasets demonstrate FedMR's effectiveness. The code is available at https://anonymous.4open.science/r/FedMR.
- Abstract(参考訳): フェデレートされたレコメンデーションシステムは、ユーザのプライバシーを保護しながらパーソナライズされたレコメンデーションを提供するために不可欠である。
しかし、現在の手法は主にIDベースのアイテム埋め込みに依存しており、アイテムの豊富なマルチモーダル情報を無視している。
そこで我々はFedMRと呼ばれるFederated Multimodal Recommendation Systemを提案する。
FedMRは、画像やテキストなどのマルチモーダルアイテムデータをエンコードするために、サーバ上のファンデーションモデルを使用する。
ユーザの好みの違いによるデータの不均一性を処理するために、FedMRは各クライアントにMixing Feature Fusion Moduleを導入し、ユーザインタラクション履歴に基づいて融合戦略の重みを調整することで、ユーザの詳細な好みをキャプチャするパーソナライズされたアイテム表現を生成する。
FedMRは既存のIDベースのフェデレーションレコメンデーションシステムと互換性があり、オリジナルのフレームワークを変更することなくパフォーマンスを向上させる。
4つの実世界のマルチモーダルデータセットの実験は、FedMRの有効性を示している。
コードはhttps://anonymous.4open.science/r/FedMRで公開されている。
関連論文リスト
- FindRec: Stein-Guided Entropic Flow for Multi-Modal Sequential Recommendation [50.438552588818]
textbfFindRec (textbfFlexible unified textbfinformation textbfdisentanglement for multi-modal sequence textbfRecommendation)を提案する。
Stein kernel-based Integrated Information Coordination Module (IICM) は理論上、マルチモーダル特徴とIDストリーム間の分散一貫性を保証する。
マルチモーダル特徴を文脈的関連性に基づいて適応的にフィルタリング・結合するクロスモーダル・エキスパート・ルーティング機構。
論文 参考訳(メタデータ) (2025-07-07T04:09:45Z) - Hyper-modal Imputation Diffusion Embedding with Dual-Distillation for Federated Multimodal Knowledge Graph Completion [59.54067771781552]
本稿では,FedMKGCのマルチモーダル不確実性とマルチモーダルクライアントの不均一性問題に対処するMMFeD3-HidEというフレームワークを提案する。
本稿では,MMFedEという一般的なFedMKGCバックボーン,異種マルチモーダル情報を持つデータセット,構築されたベースラインの3つのグループからなる総合評価のためのFedMKGCベンチマークを提案する。
論文 参考訳(メタデータ) (2025-06-27T09:32:58Z) - BiXFormer: A Robust Framework for Maximizing Modality Effectiveness in Multi-Modal Semantic Segmentation [55.486872677160015]
マスクレベルの分類タスクとしてマルチモーダルなセマンティックセグメンテーションを再構成する。
統一モダリティマッチング(UMM)とクロスモダリティアライメント(CMA)を統合したBiXFormerを提案する。
合成および実世界のマルチモーダルベンチマーク実験により,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2025-06-04T08:04:58Z) - Molar: Multimodal LLMs with Collaborative Filtering Alignment for Enhanced Sequential Recommendation [4.518104756199573]
Molarは、複数のコンテンツモダリティとID情報を統合するシーケンシャルなレコメンデーションフレームワークで、協調的な信号を効果的にキャプチャする。
マルチモーダルコンテンツと協調フィルタリングの洞察をシームレスに組み合わせることで、Molarはユーザの関心事とコンテキスト意味論の両方をキャプチャし、より優れた推奨精度をもたらす。
論文 参考訳(メタデータ) (2024-12-24T05:23:13Z) - FedMoE-DA: Federated Mixture of Experts via Domain Aware Fine-grained Aggregation [22.281467168796645]
Federated Learning(FL)は、複数のクライアントがプライベートデータを共有せずにモデルをトレーニングできる、コラボレーティブな機械学習アプローチである。
我々は、新しいドメイン認識、きめ細かい集約戦略を取り入れた新しいFLモデルトレーニングフレームワークであるFedMoE-DAを提案し、ロバスト性、パーソナライズ性、通信効率を同時に向上する。
論文 参考訳(メタデータ) (2024-11-04T14:29:04Z) - Part-Whole Relational Fusion Towards Multi-Modal Scene Understanding [51.96911650437978]
マルチモーダル融合はマルチモーダルシーン理解において重要な役割を担っている。
既存のほとんどの手法は、2つのモダリティを含むクロスモーダル融合に焦点を当てており、しばしばより複雑なマルチモーダル融合を見落としている。
マルチモーダルシーン理解のためのPWRF(Relational Part-Whole Fusion)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-19T02:27:30Z) - FedMoE: Personalized Federated Learning via Heterogeneous Mixture of Experts [4.412721048192925]
我々は、データ不均一性に対処するための効率的パーソナライズされたFederated LearningフレームワークであるFedMoEを紹介する。
FedMoEは2つの微調整段階から構成されており、第1段階では、観測されたアクティベーションパターンに基づいて探索を行うことで問題を単純化する。
第2段階では、これらのサブモデルはさらなるトレーニングのためにクライアントに配布され、サーバ集約のために返される。
論文 参考訳(メタデータ) (2024-08-21T03:16:12Z) - Personalized Federated Collaborative Filtering: A Variational AutoEncoder Approach [49.63614966954833]
Federated Collaborative Filtering (FedCF)は、プライバシを保護する新しいレコメンデーションフレームワークの開発に焦点を当てた新興分野である。
本稿では,ユーザのパーソナライズされた情報を潜在変数とニューラルモデルに同時に保存することで,新たなパーソナライズされたFedCF手法を提案する。
提案フレームワークを効果的に学習するために,ユーザインタラクションベクトル再構成と欠落した値予測を統合することで,特殊変分オートエンコーダ(VAE)タスクとして問題をモデル化する。
論文 参考訳(メタデータ) (2024-08-16T05:49:14Z) - Towards Personalized Federated Multi-Scenario Multi-Task Recommendation [22.095138650857436]
PF-MSMTrecは、パーソナライズされたマルチシナリオマルチタスクレコメンデーションのための新しいフレームワークである。
複数の最適化競合の独特な課題に対処するために,ボトムアップ共同学習機構を導入する。
提案手法は最先端手法より優れている。
論文 参考訳(メタデータ) (2024-06-27T07:10:37Z) - MMGRec: Multimodal Generative Recommendation with Transformer Model [81.61896141495144]
MMGRecは、マルチモーダルレコメンデーションに生成パラダイムを導入することを目指している。
まず,階層的な量子化手法であるGraph CF-RQVAEを考案し,各項目にRec-IDを割り当てる。
次に、Transformerベースのレコメンデータをトレーニングし、過去のインタラクションシーケンスに基づいて、ユーザが推奨するアイテムのRec-IDを生成する。
論文 参考訳(メタデータ) (2024-04-25T12:11:27Z) - Dual Personalization on Federated Recommendation [50.4115315992418]
フェデレートされたレコメンデーションは、フェデレーションされた設定でプライバシを保存するレコメンデーションサービスを提供することを目的とした、新しいインターネットサービスアーキテクチャである。
本稿では,ユーザ固有の軽量モデルの多くを学習するためのPersonalized Federated Recommendation(PFedRec)フレームワークを提案する。
また、ユーザとアイテムの両方の詳細なパーソナライズを効果的に学習するための、新しい二重パーソナライズ機構を提案する。
論文 参考訳(メタデータ) (2023-01-16T05:26:07Z) - Diversely Regularized Matrix Factorization for Accurate and Aggregately
Diversified Recommendation [15.483426620593013]
DivMF(Diversely Regularized Matrix Factorization)は、多彩な推薦のための新しい行列分解法である。
我々は,DivMFが総合的に多様化した推薦において最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2022-10-19T08:49:39Z) - FedSPLIT: One-Shot Federated Recommendation System Based on Non-negative
Joint Matrix Factorization and Knowledge Distillation [7.621960305708476]
我々はNMF結合因子化に基づく最初の教師なしワンショットフェデレーションCF実装であるFedSPLITを提案する。
FedSPLITは、コミュニケーションの数を大幅に減らすことで、技術の現状と類似した結果を得ることができる(特定の状況では、それよりも優れている)。
論文 参考訳(メタデータ) (2022-05-04T23:42:14Z) - Federated Multi-view Matrix Factorization for Personalized
Recommendations [53.74747022749739]
本稿では,フェデレートされた学習フレームワークを,複数のデータソースを用いた行列分解に拡張する,フェデレートされたマルチビュー行列分解手法を提案する。
本手法では,ユーザの個人情報を中央サーバに転送することなく,マルチビューモデルを学習することができる。
論文 参考訳(メタデータ) (2020-04-08T21:07:50Z) - Meta Matrix Factorization for Federated Rating Predictions [84.69112252208468]
フェデレートされたレコメンデーターシステムは、従来のレコメンデーターシステムよりもプライバシー保護という点で明確なアドバンテージを持っている。
フェデレートされたレコメンデータシステムに関するこれまでの研究は、モバイル環境におけるストレージ、RAM、エネルギ、通信帯域の制限を十分に考慮していない。
本研究の目的は,モバイル環境を対象としたレーティング予測(RP)のための新しい統合学習フレームワークを設計することである。
論文 参考訳(メタデータ) (2019-10-22T16:29:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。