論文の概要: Dual Personalization on Federated Recommendation
- arxiv url: http://arxiv.org/abs/2301.08143v2
- Date: Sat, 13 May 2023 08:23:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-16 23:36:48.652371
- Title: Dual Personalization on Federated Recommendation
- Title(参考訳): フェデレーションレコメンデーションにおける二重パーソナライズ
- Authors: Chunxu Zhang, Guodong Long, Tianyi Zhou, Peng Yan, Zijian Zhang,
Chengqi Zhang, Bo Yang
- Abstract要約: フェデレートされたレコメンデーションは、フェデレーションされた設定でプライバシを保存するレコメンデーションサービスを提供することを目的とした、新しいインターネットサービスアーキテクチャである。
本稿では,ユーザ固有の軽量モデルの多くを学習するためのPersonalized Federated Recommendation(PFedRec)フレームワークを提案する。
また、ユーザとアイテムの両方の詳細なパーソナライズを効果的に学習するための、新しい二重パーソナライズ機構を提案する。
- 参考スコア(独自算出の注目度): 50.4115315992418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated recommendation is a new Internet service architecture that aims to
provide privacy-preserving recommendation services in federated settings.
Existing solutions are used to combine distributed recommendation algorithms
and privacy-preserving mechanisms. Thus it inherently takes the form of
heavyweight models at the server and hinders the deployment of on-device
intelligent models to end-users. This paper proposes a novel Personalized
Federated Recommendation (PFedRec) framework to learn many user-specific
lightweight models to be deployed on smart devices rather than a heavyweight
model on a server. Moreover, we propose a new dual personalization mechanism to
effectively learn fine-grained personalization on both users and items. The
overall learning process is formulated into a unified federated optimization
framework. Specifically, unlike previous methods that share exactly the same
item embeddings across users in a federated system, dual personalization allows
mild finetuning of item embeddings for each user to generate user-specific
views for item representations which can be integrated into existing federated
recommendation methods to gain improvements immediately. Experiments on
multiple benchmark datasets have demonstrated the effectiveness of PFedRec and
the dual personalization mechanism. Moreover, we provide visualizations and
in-depth analysis of the personalization techniques in item embedding, which
shed novel insights on the design of recommender systems in federated settings.
The code is available.
- Abstract(参考訳): フェデレーションレコメンデーション(federated recommendation)は、プライバシー保護レコメンデーションサービスをフェデレーション設定で提供する、新しいインターネットサービスアーキテクチャである。
既存のソリューションは、分散レコメンデーションアルゴリズムとプライバシ保護メカニズムを組み合わせるために使用される。
したがって、本質的にはサーバでヘビーウェイトモデルの形をとり、デバイス上のインテリジェントモデルのエンドユーザへのデプロイを妨げる。
本稿では、サーバ上の重み付けモデルではなく、スマートデバイスにデプロイされる多くのユーザ固有の軽量モデルを学ぶために、Personalized Federated Recommendation(PFedRec)フレームワークを提案する。
さらに,ユーザとアイテムの両方の詳細なパーソナライズを効果的に学習するための,新たな二重パーソナライズ機構を提案する。
全体的な学習プロセスは統合された最適化フレームワークに定式化される。
具体的には、フェデレーションシステムでユーザ間でまったく同じアイテム埋め込みを共有する従来の方法とは異なり、デュアルパーソナライズにより、各ユーザがアイテム埋め込みを穏やかに微調整することで、アイテム表現に対するユーザ固有のビューを生成し、既存のフェデレーション推奨メソッドに統合して、すぐに改善を得られるようになる。
複数のベンチマークデータセットの実験では、PFedRecと二重パーソナライゼーション機構の有効性が実証されている。
さらに,アイテム埋め込みにおけるパーソナライズ手法の可視化と詳細な分析を行い,フェデレーション設定におけるレコメンダシステムの設計に関する新たな知見を得た。
コードは利用可能です。
関連論文リスト
- Personalized Item Representations in Federated Multimodal Recommendation [37.52127488593226]
FedMRと呼ばれるFederated Multimodal Recommendation Systemは、マルチモーダルアイテムデータをエンコードする。
FedMRは既存のIDベースのフェデレーションレコメンデーションシステムと互換性がある。
4つの実世界のマルチモーダルデータセットの実験は、FedMRの有効性を示している。
論文 参考訳(メタデータ) (2024-10-11T03:10:09Z) - End-to-End Learnable Item Tokenization for Generative Recommendation [51.82768744368208]
本稿では,アイテムのトークン化と生成レコメンデーションをシームレスに統合した,新しいエンドツーエンド生成レコメンダであるETEGRecを提案する。
本フレームワークは、アイテムトークン化器と生成レコメンデータで構成されるデュアルエンコーダデコーダアーキテクチャに基づいて開発されている。
論文 参考訳(メタデータ) (2024-09-09T12:11:53Z) - Personalized Federated Collaborative Filtering: A Variational AutoEncoder Approach [49.63614966954833]
Federated Collaborative Filtering (FedCF)は、プライバシを保護する新しいレコメンデーションフレームワークの開発に焦点を当てた新興分野である。
本稿では,ユーザのパーソナライズされた情報を潜在変数とニューラルモデルに同時に保存することで,新たなパーソナライズされたFedCF手法を提案する。
提案フレームワークを効果的に学習するために,ユーザインタラクションベクトル再構成と欠落した値予測を統合することで,特殊変分オートエンコーダ(VAE)タスクとして問題をモデル化する。
論文 参考訳(メタデータ) (2024-08-16T05:49:14Z) - Towards Personalized Federated Multi-Scenario Multi-Task Recommendation [22.095138650857436]
PF-MSMTrecは、パーソナライズされたマルチシナリオマルチタスクレコメンデーションのための新しいフレームワークである。
複数の最適化競合の独特な課題に対処するために,ボトムアップ共同学習機構を導入する。
提案手法は最先端手法より優れている。
論文 参考訳(メタデータ) (2024-06-27T07:10:37Z) - Federated Adaptation for Foundation Model-based Recommendations [29.86114788739202]
プライバシ保存方式で基礎モデルに基づくレコメンデーションシステムを強化するための新しい適応機構を提案する。
ユーザのプライベートな行動データは、サーバと共有されないため、安全である。
4つのベンチマークデータセットの実験結果から,提案手法の優れた性能が示された。
論文 参考訳(メタデータ) (2024-05-08T06:27:07Z) - How to Diversify any Personalized Recommender? A User-centric Pre-processing approach [0.0]
推薦性能を維持しつつ,Top-Nレコメンデーションの多様性を向上させるための新しいアプローチを提案する。
当社のアプローチでは,ユーザを幅広いコンテンツカテゴリやトピックに公開するための,ユーザ中心の事前処理戦略を採用しています。
論文 参考訳(メタデータ) (2024-05-03T15:02:55Z) - User Consented Federated Recommender System Against Personalized
Attribute Inference Attack [55.24441467292359]
本稿では,ユーザの異なるプライバシーニーズを柔軟に満たすために,ユーザ合意型フェデレーションレコメンデーションシステム(UC-FedRec)を提案する。
UC-FedRecは、ユーザーが様々な要求を満たすためにプライバシー設定を自己定義し、ユーザーの同意を得てレコメンデーションを行うことを可能にする。
論文 参考訳(メタデータ) (2023-12-23T09:44:57Z) - Federated Multi-view Matrix Factorization for Personalized
Recommendations [53.74747022749739]
本稿では,フェデレートされた学習フレームワークを,複数のデータソースを用いた行列分解に拡張する,フェデレートされたマルチビュー行列分解手法を提案する。
本手法では,ユーザの個人情報を中央サーバに転送することなく,マルチビューモデルを学習することができる。
論文 参考訳(メタデータ) (2020-04-08T21:07:50Z) - MetaSelector: Meta-Learning for Recommendation with User-Level Adaptive
Model Selection [110.87712780017819]
推薦システムにおけるユーザレベルの適応モデル選択を容易にするメタラーニングフレームワークを提案する。
2つのパブリックデータセットと実世界のプロダクションデータセットで実験を行います。
論文 参考訳(メタデータ) (2020-01-22T16:05:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。