Fully Unsupervised Dynamic MRI Reconstruction via Diffeo-Temporal Equivariance
- URL: http://arxiv.org/abs/2410.08646v1
- Date: Fri, 11 Oct 2024 09:16:30 GMT
- Title: Fully Unsupervised Dynamic MRI Reconstruction via Diffeo-Temporal Equivariance
- Authors: Andrew Wang, Mike Davies,
- Abstract summary: Supervised learning methods are flawed as they assume periodicity, disallowing imaging of true motion.
We propose an unsupervised framework to learn to reconstruct dynamic MRI sequences from undersampled measurements alone.
Our method is agnostic to the underlying neural network architecture and can be used to adapt the latest paradigms and post-processing approaches.
- Score: 2.260147251787331
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reconstructing dynamic MRI image sequences from undersampled accelerated measurements is crucial for faster and higher spatiotemporal resolution real-time imaging of cardiac motion, free breathing motion and many other applications. Classical paradigms, such as gated cine MRI, assume periodicity, disallowing imaging of true motion. Supervised deep learning methods are fundamentally flawed as, in dynamic imaging, ground truth fully-sampled videos are impossible to truly obtain. We propose an unsupervised framework to learn to reconstruct dynamic MRI sequences from undersampled measurements alone by leveraging natural geometric spatiotemporal equivariances of MRI. Dynamic Diffeomorphic Equivariant Imaging (DDEI) significantly outperforms state-of-the-art unsupervised methods such as SSDU on highly accelerated dynamic cardiac imaging. Our method is agnostic to the underlying neural network architecture and can be used to adapt the latest models and post-processing approaches. Our code and video demos are at https://github.com/Andrewwango/ddei.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - TEAM PILOT -- Learned Feasible Extendable Set of Dynamic MRI Acquisition Trajectories [2.7719338074999547]
We introduce a novel deep-compressed sensing approach that uses 3D window attention and flexible, temporally extendable acquisition trajectories.
Our method significantly reduces both training and inference times compared to existing approaches.
Tests with real data show that our approach outperforms current state-of-theart techniques.
arXiv Detail & Related papers (2024-09-19T13:45:13Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Deep Cardiac MRI Reconstruction with ADMM [7.694990352622926]
We present a deep learning (DL)-based method for accelerated cine and multi-contrast reconstruction in the context of cardiac imaging.
Our method optimize in both the image and k-space domains, allowing for high reconstruction fidelity.
arXiv Detail & Related papers (2023-10-10T13:46:11Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Multi PILOT: Learned Feasible Multiple Acquisition Trajectories for
Dynamic MRI [0.7843343739054056]
In this study, we consider acquisition learning in the dynamic imaging setting.
We design an end-to-end pipeline for the joint optimization of multiple per-frame acquisition trajectories.
We demonstrate improved image reconstruction quality in shorter acquisition times.
arXiv Detail & Related papers (2023-03-13T14:23:39Z) - ERNAS: An Evolutionary Neural Architecture Search for Magnetic Resonance
Image Reconstructions [0.688204255655161]
A popular approach to accelerated MRI is to undersample the k-space data.
While undersampling speeds up the scan procedure, it generates artifacts in the images, and advanced reconstruction algorithms are needed to produce artifact-free images.
In this work, MRI reconstruction from undersampled data was carried out using an optimized neural network using a novel evolutionary neural architecture search algorithm.
arXiv Detail & Related papers (2022-06-15T03:42:18Z) - STRESS: Super-Resolution for Dynamic Fetal MRI using Self-Supervised
Learning [2.5581619987137048]
We propose STRESS, a self-supervised super-resolution framework for dynamic fetal MRI with interleaved slice acquisitions.
Our proposed method simulates an interleaved slice acquisition along the high-resolution axis on the originally acquired data to generate pairs of low- and high-resolution images.
Evaluations on both simulated and in utero data show that our proposed method outperforms other self-supervised super-resolution methods.
arXiv Detail & Related papers (2021-06-23T13:52:11Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.