radarODE-MTL: A Multi-Task Learning Framework with Eccentric Gradient Alignment for Robust Radar-Based ECG Reconstruction
- URL: http://arxiv.org/abs/2410.08656v1
- Date: Fri, 11 Oct 2024 09:28:09 GMT
- Title: radarODE-MTL: A Multi-Task Learning Framework with Eccentric Gradient Alignment for Robust Radar-Based ECG Reconstruction
- Authors: Yuanyuan Zhang, Rui Yang, Yutao Yue, Eng Gee Lim,
- Abstract summary: This work creatively deconstructs the radar-based ECG recovery into three individual tasks.
It proposes a multi-task learning framework, radarODE-MTL, to increase the robustness against consistent and abrupt noises.
The experimental results indicate that radarODE-MTL could reconstruct accurate ECG signals robustly from radar signals.
- Score: 13.124543736214921
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Millimeter-wave radar is promising to provide robust and accurate vital sign monitoring in an unobtrusive manner. However, the radar signal might be distorted in propagation by ambient noise or random body movement, ruining the subtle cardiac activities and destroying the vital sign recovery. In particular, the recovery of electrocardiogram (ECG) signal heavily relies on the deep-learning model and is sensitive to noise. Therefore, this work creatively deconstructs the radar-based ECG recovery into three individual tasks and proposes a multi-task learning (MTL) framework, radarODE-MTL, to increase the robustness against consistent and abrupt noises. In addition, to alleviate the potential conflicts in optimizing individual tasks, a novel multi-task optimization strategy, eccentric gradient alignment (EGA), is proposed to dynamically trim the task-specific gradients based on task difficulties in orthogonal space. The proposed radarODE-MTL with EGA is evaluated on the public dataset with prominent improvements in accuracy, and the performance remains consistent under noises. The experimental results indicate that radarODE-MTL could reconstruct accurate ECG signals robustly from radar signals and imply the application prospect in real-life situations. The code is available at: http://github.com/ZYY0844/radarODE-MTL.
Related papers
- radarODE: An ODE-Embedded Deep Learning Model for Contactless ECG Reconstruction from Millimeter-Wave Radar [16.52097542165782]
A novel deep learning framework called radarODE is designed to fuse the temporal and morphological features extracted from radar signals and generate ECG.
radarODE achieves better performance compared with the benchmark in terms of missed detection rate, root mean square error, Pearson correlation coefficient with the improvement of 9%, 16% and 19%, respectively.
arXiv Detail & Related papers (2024-08-03T06:07:15Z) - BRSR-OpGAN: Blind Radar Signal Restoration using Operational Generative Adversarial Network [15.913517836391357]
Real-world radar signals are often corrupted by a blend of artifacts, including but not limited to unwanted echo, sensor noise, intentional jamming, and interference.
This study introduces Blind Radar Signal Restoration using an Operational Generative Adversarial Network (BRSR-OpGAN)
This approach is designed to improve the quality of radar signals, regardless of the diversity and intensity of the corruption.
arXiv Detail & Related papers (2024-07-18T23:55:48Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
We introduce Radar Fields - a neural scene reconstruction method designed for active radar imagers.
Our approach unites an explicit, physics-informed sensor model with an implicit neural geometry and reflectance model to directly synthesize raw radar measurements.
We validate the effectiveness of the method across diverse outdoor scenarios, including urban scenes with dense vehicles and infrastructure.
arXiv Detail & Related papers (2024-05-07T20:44:48Z) - DART: Implicit Doppler Tomography for Radar Novel View Synthesis [9.26298115522881]
DART is a Neural Radiance Field-inspired method which uses radar-specific physics to create a reflectance and transmittance-based rendering pipeline for range-Doppler images.
In comparison to state-of-the-art baselines, DART synthesizes superior radar range-Doppler images from novel views across all datasets.
arXiv Detail & Related papers (2024-03-06T17:54:50Z) - Multi-stage Learning for Radar Pulse Activity Segmentation [51.781832424705094]
Radio signal recognition is a crucial function in electronic warfare.
Precise identification and localisation of radar pulse activities are required by electronic warfare systems.
Deep learning-based radar pulse activity recognition methods have remained largely underexplored.
arXiv Detail & Related papers (2023-12-15T01:56:27Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
We propose a novel method named EchoFusion to skip the existing radar signal processing pipeline.
Specifically, we first generate the Bird's Eye View (BEV) queries and then take corresponding spectrum features from radar to fuse with other sensors.
arXiv Detail & Related papers (2023-07-31T09:53:50Z) - Multi-task Learning for Radar Signal Characterisation [48.265859815346985]
This paper presents an approach for tackling radar signal classification and characterisation as a multi-task learning (MTL) problem.
We propose the IQ Signal Transformer (IQST) among several reference architectures that allow for simultaneous optimisation of multiple regression and classification tasks.
We demonstrate the performance of our proposed MTL model on a synthetic radar dataset, while also providing a first-of-its-kind benchmark for radar signal characterisation.
arXiv Detail & Related papers (2023-06-19T12:01:28Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
We introduce a bi-directional LiDAR-Radar fusion framework, termed Bi-LRFusion, to tackle the challenges and improve 3D detection for dynamic objects.
We conduct extensive experiments on nuScenes and ORR datasets, and show that our Bi-LRFusion achieves state-of-the-art performance for detecting dynamic objects.
arXiv Detail & Related papers (2023-06-02T10:57:41Z) - Identifying Coordination in a Cognitive Radar Network -- A
Multi-Objective Inverse Reinforcement Learning Approach [30.65529797672378]
This paper provides a novel multi-objective inverse reinforcement learning approach for detecting coordination among radars.
It also applies to more general problems of inverse detection and learning of multi-objective optimizing systems.
arXiv Detail & Related papers (2022-11-13T17:27:39Z) - Waveform Selection for Radar Tracking in Target Channels With Memory via
Universal Learning [14.796960833031724]
Adapting the radar's waveform using partial information about the state of the scene has been shown to provide performance benefits in many practical scenarios.
This work examines a radar system which builds a compressed model of the radar-environment interface in the form of a context-tree.
The proposed approach is tested in a simulation study, and is shown to provide tracking performance improvements over two state-of-the-art waveform selection schemes.
arXiv Detail & Related papers (2021-08-02T21:27:56Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
We tackle the problem of exploiting Radar for perception in the context of self-driving cars.
We propose a new solution that exploits both LiDAR and Radar sensors for perception.
Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion.
arXiv Detail & Related papers (2020-07-28T17:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.