Towards Smarter Sensing: 2D Clutter Mitigation in RL-Driven Cognitive MIMO Radar
- URL: http://arxiv.org/abs/2502.04967v1
- Date: Fri, 07 Feb 2025 14:31:58 GMT
- Title: Towards Smarter Sensing: 2D Clutter Mitigation in RL-Driven Cognitive MIMO Radar
- Authors: Adam Umra, Aya Mostafa Ahmed, Aydin Sezgin,
- Abstract summary: The system employs a planar array configuration and adapts its transmitted waveforms and beamforming patterns to optimize detection performance.
A robust Wald-type detector is integrated with a SARSA-based RL algorithm, enabling the radar to learn and adapt to complex clutter environments.
- Score: 8.674241138986925
- License:
- Abstract: Motivated by the growing interest in integrated sensing and communication for 6th generation (6G) networks, this paper presents a cognitive Multiple-Input Multiple-Output (MIMO) radar system enhanced by reinforcement learning (RL) for robust multitarget detection in dynamic environments. The system employs a planar array configuration and adapts its transmitted waveforms and beamforming patterns to optimize detection performance in the presence of unknown two-dimensional (2D) disturbances. A robust Wald-type detector is integrated with a SARSA-based RL algorithm, enabling the radar to learn and adapt to complex clutter environments modeled by a 2D autoregressive process. Simulation results demonstrate significant improvements in detection probability compared to omnidirectional methods, particularly for low Signal-to-Noise Ratio (SNR) targets masked by clutter.
Related papers
- POMDP-Driven Cognitive Massive MIMO Radar: Joint Target Detection-Tracking In Unknown Disturbances [42.99053410696693]
This work explores the application of a Partially Observable Markov Decision Process framework to enhance the tracking and detection tasks.
The proposed approach employs an online algorithm that does not require any apriori knowledge of the noise statistics.
arXiv Detail & Related papers (2024-10-23T15:34:11Z) - UDHF2-Net: Uncertainty-diffusion-model-based High-Frequency TransFormer Network for Remotely Sensed Imagery Interpretation [12.24506241611653]
Uncertainty-diffusion-model-based high-Frequency TransFormer network (UDHF2-Net) is the first to be proposed.
UDHF2-Net is a spatially-stationary-and-non-stationary high-frequency connection paradigm (SHCP)
Mask-and-geo-knowledge-based uncertainty diffusion module (MUDM) is a self-supervised learning strategy.
A frequency-wise semi-pseudo-Siamese UDHF2-Net is the first to be proposed to balance accuracy and complexity for change detection.
arXiv Detail & Related papers (2024-06-23T15:03:35Z) - MambaAD: Exploring State Space Models for Multi-class Unsupervised Anomaly Detection [53.03687787922032]
Mamba-based models with superior long-range modeling and linear efficiency have garnered substantial attention.
MambaAD consists of a pre-trained encoder and a Mamba decoder featuring (Locality-Enhanced State Space) LSS modules at multi-scales.
The proposed LSS module, integrating parallel cascaded (Hybrid State Space) HSS blocks and multi- kernel convolutions operations, effectively captures both long-range and local information.
arXiv Detail & Related papers (2024-04-09T18:28:55Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
We propose a deep detector entitled LoRD-Net for recovering information symbols from one-bit measurements.
LoRD-Net has a task-based architecture dedicated to recovering the underlying signal of interest.
We evaluate the proposed receiver architecture for one-bit signal recovery in wireless communications.
arXiv Detail & Related papers (2021-02-05T04:26:05Z) - Ensemble and Random Collaborative Representation-Based Anomaly Detector
for Hyperspectral Imagery [133.83048723991462]
We propose a novel ensemble and random collaborative representation-based detector (ERCRD) for hyperspectral anomaly detection (HAD)
Our experiments on four real hyperspectral datasets exhibit the accuracy and efficiency of this proposed ERCRD method compared with ten state-of-the-art HAD methods.
arXiv Detail & Related papers (2021-01-06T11:23:51Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - Deep Reinforcement Learning Control for Radar Detection and Tracking in
Congested Spectral Environments [8.103366584285645]
A radar learns to vary the bandwidth and center frequency of its linear frequency modulated (LFM) waveforms to mitigate mutual interference with other systems.
We extend the DQL-based approach to incorporate Double Q-learning and a recurrent neural network to form a Double Deep Recurrent Q-Network.
Our experimental results indicate that the proposed Deep RL approach significantly improves radar detection performance in congested spectral environments.
arXiv Detail & Related papers (2020-06-23T17:21:28Z) - A Reinforcement Learning based approach for Multi-target Detection in
Massive MIMO radar [12.982044791524494]
This paper considers the problem of multi-target detection for massive multiple input multiple output (MMIMO) cognitive radar (CR)
We propose a reinforcement learning (RL) based algorithm for cognitive multi-target detection in the presence of unknown disturbance statistics.
Numerical simulations are performed to assess the performance of the proposed RL-based algorithm in both stationary and dynamic environments.
arXiv Detail & Related papers (2020-05-10T16:29:06Z) - Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems
Exploiting Deep Reinforcement Learning [21.770491711632832]
The reconfigurable intelligent surface (RIS) has been speculated as one of the key enabling technologies for the future six generation (6G) wireless communication systems.
In this paper, we investigate the joint design of transmit beamforming matrix at the base station and the phase shift matrix at the RIS, by leveraging recent advances in deep reinforcement learning (DRL)
The proposed algorithm is not only able to learn from the environment and gradually improve its behavior, but also obtains the comparable performance compared with two state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-02-24T04:28:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.