論文の概要: Hands-on Introduction to Randomized Benchmarking
- arxiv url: http://arxiv.org/abs/2410.08683v1
- Date: Fri, 11 Oct 2024 10:16:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 22:35:12.913312
- Title: Hands-on Introduction to Randomized Benchmarking
- Title(参考訳): ランダム化ベンチマークのハンズオン
- Authors: Ana Silva, Eliska Greplova,
- Abstract要約: このチュートリアルの目的は、ランダム化されたベンチマーク技術の背後にある主要な原則の概要を提供することである。
各章には付属するPythonノートが付属しており、各プロトコルの本質的なステップが説明されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The goal of this tutorial is to provide an overview of the main principles behind randomized benchmarking techniques. A newcomer to the field faces the challenge that a considerable amount of background knowledge is required to get familiar with the topic. Our purpose is to ease this process by providing a pedagogical introduction to randomized benchmarking. Every chapter is supplemented with an accompanying Python notebook, illustrating the essential steps of each protocol.
- Abstract(参考訳): このチュートリアルの目的は、ランダム化されたベンチマーク技術の背後にある主要な原則の概要を提供することである。
この分野の新参者は、トピックに慣れるために大量のバックグラウンド知識が必要であるという課題に直面している。
我々の目的は、ランダム化ベンチマークの教育的導入を提供することによって、このプロセスを緩和することである。
各章には付属するPythonノートが付属しており、各プロトコルの本質的なステップが説明されている。
関連論文リスト
- Previously on the Stories: Recap Snippet Identification for Story
Reading [51.641565531840186]
本稿では,手作り評価データセットを用いたRecap Snippet Identificationと呼ばれる,この有用なタスクに関する最初のベンチマークを提案する。
本実験により,提案課題は,提案課題がスニペット間のプロット相関の深い理解を必要とするため,PLM,LSM,および提案手法に難題であることが判明した。
論文 参考訳(メタデータ) (2024-02-11T18:27:14Z) - Shatter and Gather: Learning Referring Image Segmentation with Text
Supervision [52.46081425504072]
入力画像中の意味的エンティティを検出し,テキストクエリに関連するエンティティを組み合わせて参照者のマスクを予測するモデルを提案する。
提案手法は,イメージセグメンテーションを参照するための4つの公開ベンチマークで評価され,既存のタスクと最近の全てのベンチマークにおけるオープン語彙セグメンテーションモデルよりも明らかに優れていた。
論文 参考訳(メタデータ) (2023-08-29T15:39:15Z) - Learning and Verification of Task Structure in Instructional Videos [85.511888642497]
本稿では,教師ビデオのセマンティクスと構造を表現することに焦点を当てた,事前学習型ビデオモデルVideoTaskformerを紹介する。
ステップ表現をローカルに学習する以前の作業と比較して,私たちのアプローチは,それらをグローバルに学習するものです。
命令ビデオにおける誤り検出のための2つの新しいベンチマークを導入し,異常なステップが存在するか,ステップが正しい順序で実行されるかを確認する。
論文 参考訳(メタデータ) (2023-03-23T17:59:54Z) - Unsupervised Task Graph Generation from Instructional Video Transcripts [53.54435048879365]
本研究では,実世界の活動を行う指導ビデオのテキスト書き起こしを提供する環境について考察する。
目標は、これらの重要なステップ間の依存関係関係と同様に、タスクに関連する重要なステップを特定することです。
本稿では,命令調整言語モデルの推論能力とクラスタリングとランキングコンポーネントを組み合わせたタスクグラフ生成手法を提案する。
論文 参考訳(メタデータ) (2023-02-17T22:50:08Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
本稿では,フィードバックを数発の分類として提供するという課題について考察する。
メタラーナーは、インストラクターによるいくつかの例から、新しいプログラミング質問に関する学生のコードにフィードバックを与えるように適応します。
本手法は,第1段階の大学が提供したプログラムコースにおいて,16,000名の学生試験ソリューションに対するフィードバックの提供に成功している。
論文 参考訳(メタデータ) (2021-07-23T22:41:28Z) - Unsupervised Deep Learning for Handwritten Page Segmentation [0.0]
ページ分割のための教師なし深層学習法を提案する。
サイアムスニューラルネットワークは、測定可能な特性を使用してパッチを区別するように訓練される。
実験の結果,提案手法は通常の教師なし手法と同じくらい有効であることがわかった。
論文 参考訳(メタデータ) (2021-01-19T07:13:38Z) - Distilling Knowledge from Reader to Retriever for Question Answering [16.942581590186343]
我々は,知識蒸留に触発された下流タスクのレトリバーモデルを学ぶ手法を提案する。
質問応答の方法を評価し,最新の結果を得た。
論文 参考訳(メタデータ) (2020-12-08T17:36:34Z) - Train No Evil: Selective Masking for Task-Guided Pre-Training [97.03615486457065]
一般的な事前学習と微調整の間を選択的にマスキングするタスク誘導事前学習段階を付加した3段階のフレームワークを提案する。
提案手法は,50%未満のコストで同等あるいはさらに優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2020-04-21T03:14:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。