論文の概要: Quantum evolution kernel : Machine learning on graphs with programmable
arrays of qubits
- arxiv url: http://arxiv.org/abs/2107.03247v1
- Date: Wed, 7 Jul 2021 14:25:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-23 04:25:08.749791
- Title: Quantum evolution kernel : Machine learning on graphs with programmable
arrays of qubits
- Title(参考訳): 量子進化核 : 量子ビットのプログラマブル配列を用いたグラフ上の機械学習
- Authors: Louis-Paul Henry, Slimane Thabet, Constantin Dalyac and Lo\"ic Henriet
- Abstract要約: 本稿では,量子系の時間進化に基づいて,グラフ構造データ間の類似度を測定する手法を提案する。
システムのハミルトニアンにおける入力グラフの位相を符号化することにより、進化はデータの重要な特徴を保持する測定サンプルを生成する。
本手法は,典型的なベンチマークデータセット上での標準グラフカーネルと比較して性能がよいことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of reliable Quantum Processing Units (QPU) opens up
novel computational opportunities for machine learning. Here, we introduce a
procedure for measuring the similarity between graph-structured data, based on
the time-evolution of a quantum system. By encoding the topology of the input
graph in the Hamiltonian of the system, the evolution produces measurement
samples that retain key features of the data. We study analytically the
procedure and illustrate its versatility in providing links to standard
classical approaches. We then show numerically that this scheme performs well
compared to standard graph kernels on typical benchmark datasets. Finally, we
study the possibility of a concrete implementation on a realistic neutral-atom
quantum processor.
- Abstract(参考訳): 信頼できる量子処理ユニット(QPU)の急速な開発により、機械学習の新たな計算機会が開かれる。
本稿では,量子システムの時間発展に基づいて,グラフ構造データ間の類似度を測定する手法を提案する。
システムのハミルトニアンにおける入力グラフの位相を符号化することにより、進化はデータの重要な特徴を保持する測定サンプルを生成する。
この手順を解析的に検討し,標準古典的アプローチとの関連性を示す。
次に,典型的なベンチマークデータセットの標準グラフカーネルと比較して,このスキームが良好であることを数値的に示す。
最後に,現実的な中性原子量子プロセッサへの具体的な実装の可能性を検討する。
関連論文リスト
- Quantum Positional Encodings for Graph Neural Networks [1.9791587637442671]
本稿では,量子コンピュータを用いて得られたグラフニューラルネットワークに適した位置符号化の新たなファミリを提案する。
私たちのインスピレーションは、量子処理ユニットの最近の進歩に起因しています。
論文 参考訳(メタデータ) (2024-05-21T17:56:33Z) - A hybrid quantum-classical classifier based on branching multi-scale
entanglement renormalization ansatz [5.548873288570182]
本稿では,ラベル伝搬に基づく量子半教師付き分類器を提案する。
グラフ構築の難しさを考慮し,変分量子ラベル伝搬法(VQLP)を開発した。
本手法では、最適化に必要なパラメータを減らすために、局所パラメータ化量子回路を作成する。
論文 参考訳(メタデータ) (2023-03-14T13:46:45Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Noisy Quantum Kernel Machines [58.09028887465797]
量子学習マシンの新たなクラスは、量子カーネルのパラダイムに基づくものである。
消散と脱コヒーレンスがパフォーマンスに与える影響について検討する。
量子カーネルマシンでは,デコヒーレンスや散逸を暗黙の正規化とみなすことができる。
論文 参考訳(メタデータ) (2022-04-26T09:52:02Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
まず、量子力学とグラフ理論の相関関係について、量子コンピュータが有用な解を生成できることを示す。
本稿では,その実践性と適用性について,一般的なグラフ学習手法について概説する。
今後の研究の触媒として期待される量子グラフ学習のスナップショットを提供する。
論文 参考訳(メタデータ) (2022-02-19T02:56:47Z) - Towards Quantum Graph Neural Networks: An Ego-Graph Learning Approach [47.19265172105025]
グラフ構造化データのための新しいハイブリッド量子古典アルゴリズムを提案し、これをEgo-graph based Quantum Graph Neural Network (egoQGNN)と呼ぶ。
egoQGNNはテンソル積とユニティ行列表現を用いてGNN理論フレームワークを実装し、必要なモデルパラメータの数を大幅に削減する。
このアーキテクチャは、現実世界のデータからヒルベルト空間への新しいマッピングに基づいている。
論文 参考訳(メタデータ) (2022-01-13T16:35:45Z) - Graph Kernel Neural Networks [53.91024360329517]
本稿では、グラフ上の内部積を計算するカーネル関数であるグラフカーネルを用いて、標準畳み込み演算子をグラフ領域に拡張することを提案する。
これにより、入力グラフの埋め込みを計算する必要のない完全に構造的なモデルを定義することができる。
私たちのアーキテクチャでは,任意の種類のグラフカーネルをプラグインすることが可能です。
論文 参考訳(メタデータ) (2021-12-14T14:48:08Z) - Quantum kernels for real-world predictions based on electronic health
records [0.0]
医療・生命科学における経験的量子優位性(EQA)に関する最初の体系的研究を報告する。
各構成座標に対して、IBM量子コンピュータを用いて、放射基底関数(RBF)カーネルとカスタムカーネルを用いた量子モデルに基づく古典的サポートベクトルマシン(SVM)モデルを訓練した。
我々は、量子カーネルが特定のデータセットに利点をもたらすレシエーションを実証的に特定し、与えられたモデルの精度を定量的に見積もる指標である地形粗さ指数を導入した。
論文 参考訳(メタデータ) (2021-12-12T12:06:19Z) - Quantum machine learning of graph-structured data [0.38581147665516596]
グラフ構造化量子データについて検討し、量子ニューラルネットワークによる量子機械学習の実施方法について述べる。
我々は、この追加グラフ構造を体系的に利用して量子学習アルゴリズムを改善する方法について説明する。
論文 参考訳(メタデータ) (2021-03-19T14:39:19Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
グラフ型と量子系コヒーレンスの両方の要件を見つけるプロセスは自動化可能であることを示す。
この自動化は、特定のタイプの畳み込みニューラルネットワークを使用して、どのネットワークで、どのコヒーレンス要求の量子優位性が可能かを学習する。
我々の結果は、量子実験における利点の実証と、科学的研究と発見の自動化への道を開くために重要である。
論文 参考訳(メタデータ) (2020-01-15T18:36:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。