Impact of Surface Reflections in Maritime Obstacle Detection
- URL: http://arxiv.org/abs/2410.08713v1
- Date: Fri, 11 Oct 2024 10:55:24 GMT
- Title: Impact of Surface Reflections in Maritime Obstacle Detection
- Authors: Samed Yalçın, Hazım Kemal Ekenel,
- Abstract summary: Maritime obstacle detection aims to detect possible obstacles for autonomous driving of unmanned surface vehicles.
Previous works have indicated surface reflections as a source of false positives for object detectors in maritime obstacle detection tasks.
We show that surface reflections indeed adversely affect detector performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Maritime obstacle detection aims to detect possible obstacles for autonomous driving of unmanned surface vehicles. In the context of maritime obstacle detection, the water surface can act like a mirror on certain circumstances, causing reflections on imagery. Previous works have indicated surface reflections as a source of false positives for object detectors in maritime obstacle detection tasks. In this work, we show that surface reflections indeed adversely affect detector performance. We measure the effect of reflections by testing on two custom datasets, which we make publicly available. The first one contains imagery with reflections, while in the second reflections are inpainted. We show that the reflections reduce mAP by 1.2 to 9.6 points across various detectors. To remove false positives on reflections, we propose a novel filtering approach named Heatmap Based Sliding Filter. We show that the proposed method reduces the total number of false positives by 34.64% while minimally affecting true positives. We also conduct qualitative analysis and show that the proposed method indeed removes false positives on the reflections. The datasets can be found on https://github.com/SamedYalcin/MRAD.
Related papers
- Towards Flexible Interactive Reflection Removal with Human Guidance [75.38207315080624]
Single image reflection removal is inherently ambiguous, as both the reflection and transmission components requiring separation may follow natural image statistics.
Existing methods attempt to address the issue by using various types of low-level and physics-based cues as sources of reflection signals.
In this paper, we aim to explore a novel flexible interactive reflection removal approach that leverages various forms of sparse human guidance.
arXiv Detail & Related papers (2024-06-03T17:34:37Z) - Monocular Identity-Conditioned Facial Reflectance Reconstruction [71.90507628715388]
Existing methods rely on a large amount of light-stage captured data to learn facial reflectance models.
We learn the reflectance prior in image space rather than UV space and present a framework named ID2Reflectance.
Our framework can directly estimate the reflectance maps of a single image while using limited reflectance data for training.
arXiv Detail & Related papers (2024-03-30T09:43:40Z) - Indoor Obstacle Discovery on Reflective Ground via Monocular Camera [21.19387987977164]
Visual obstacle discovery is a key step towards autonomous navigation of indoor mobile robots.
In this paper, we argue that the key to this problem lies in obtaining discriminative features for reflections and obstacles.
We introduce a new dataset for Obstacle on Reflective Ground (ORG), which comprises 15 scenes with various ground reflections.
arXiv Detail & Related papers (2024-01-02T22:07:44Z) - Revisiting Single Image Reflection Removal In the Wild [83.42368937164473]
This research focuses on the issue of single-image reflection removal (SIRR) in real-world conditions.
We devise an advanced reflection collection pipeline that is highly adaptable to a wide range of real-world reflection scenarios.
We develop a large-scale, high-quality reflection dataset named Reflection Removal in the Wild (RRW)
arXiv Detail & Related papers (2023-11-29T02:31:10Z) - Temporal Context for Robust Maritime Obstacle Detection [10.773819584718648]
We propose WaSR-T, a novel maritime obstacle detection network.
By learning the local temporal characteristics of object reflection on the water surface, WaSR-T substantially improves obstacle detection accuracy.
Compared with existing single-frame methods, WaSR-T reduces the number of false positive detections by 41% overall and by over 53% within the danger zone of the boat.
arXiv Detail & Related papers (2022-03-10T12:58:14Z) - Location-aware Single Image Reflection Removal [54.93808224890273]
This paper proposes a novel location-aware deep learning-based single image reflection removal method.
We use a reflection confidence map as the cues for the network to learn how to encode the reflection information adaptively.
The integration of location information into the network significantly improves the quality of reflection removal results.
arXiv Detail & Related papers (2020-12-13T19:34:35Z) - Two-Stage Single Image Reflection Removal with Reflection-Aware Guidance [78.34235841168031]
We present a novel two-stage network with reflection-aware guidance (RAGNet) for single image reflection removal (SIRR)
RAG can be used (i) to mitigate the effect of reflection from the observation, and (ii) to generate mask in partial convolution for mitigating the effect of deviating from linear combination hypothesis.
Experiments on five commonly used datasets demonstrate the quantitative and qualitative superiority of our RAGNet in comparison to the state-of-the-art SIRR methods.
arXiv Detail & Related papers (2020-12-02T03:14:57Z) - Polarized Reflection Removal with Perfect Alignment in the Wild [66.48211204364142]
We present a novel formulation to removing reflection from polarized images in the wild.
We first identify the misalignment issues of existing reflection removal datasets.
We build a new dataset with more than 100 types of glass in which obtained transmission images are perfectly aligned with input mixed images.
arXiv Detail & Related papers (2020-03-28T13:29:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.