Calibrated Computation-Aware Gaussian Processes
- URL: http://arxiv.org/abs/2410.08796v1
- Date: Fri, 11 Oct 2024 13:30:08 GMT
- Title: Calibrated Computation-Aware Gaussian Processes
- Authors: Disha Hegde, Mohamed Adil, Jon Cockayne,
- Abstract summary: We propose a new CAGP framework, CAGP-GS, based on using Gauss-Seidel iterations for the underlying probabilistic linear solver.
We test the calibratedness on a synthetic problem, and compare the performance to existing approaches on a large-scale global temperature regression problem.
- Score: 1.1470070927586018
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian processes are notorious for scaling cubically with the size of the training set, preventing application to very large regression problems. Computation-aware Gaussian processes (CAGPs) tackle this scaling issue by exploiting probabilistic linear solvers to reduce complexity, widening the posterior with additional computational uncertainty due to reduced computation. However, the most commonly used CAGP framework results in (sometimes dramatically) conservative uncertainty quantification, making the posterior unrealistic in practice. In this work, we prove that if the utilised probabilistic linear solver is calibrated, in a rigorous statistical sense, then so too is the induced CAGP. We thus propose a new CAGP framework, CAGP-GS, based on using Gauss-Seidel iterations for the underlying probabilistic linear solver. CAGP-GS performs favourably compared to existing approaches when the test set is low-dimensional and few iterations are performed. We test the calibratedness on a synthetic problem, and compare the performance to existing approaches on a large-scale global temperature regression problem.
Related papers
- Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
We show that when emphdone right -- by which we mean using specific insights from optimisation and kernel communities -- gradient descent is highly effective.
We introduce a emphstochastic dual descent algorithm, explain its design in an intuitive manner and illustrate the design choices.
Our method places Gaussian process regression on par with state-of-the-art graph neural networks for molecular binding affinity prediction.
arXiv Detail & Related papers (2023-10-31T16:15:13Z) - Nonlinear Granger Causality using Kernel Ridge Regression [0.0]
I introduce a novel algorithm and accompanying Python library, named mlcausality, designed for the identification of nonlinear Granger causal relationships.
I conduct a comprehensive performance analysis of mlcausality when the prediction regressor is the kernel ridge regressor with the radial basis function kernel.
Results demonstrate that mlcausality employing kernel ridge regression achieves competitive AUC scores across a diverse set of simulated data.
arXiv Detail & Related papers (2023-09-10T18:28:48Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
State-of-the-art approaches for designing calibrated models rely on inflating the Gaussian process posterior variance.
We present a calibration approach that generates predictive quantiles using a computation inspired by the vanilla Gaussian process posterior variance.
Our approach is shown to yield a calibrated model under reasonable assumptions.
arXiv Detail & Related papers (2023-02-23T12:17:36Z) - Revisiting Active Sets for Gaussian Process Decoders [0.0]
We develop a new estimate of the log-marginal likelihood based on recently discovered links to cross-validation.
We demonstrate that the resulting active sets (SAS) approximation significantly improves the robustness of GP decoder training.
arXiv Detail & Related papers (2022-09-10T10:49:31Z) - Scalable Gaussian-process regression and variable selection using
Vecchia approximations [3.4163060063961255]
Vecchia-based mini-batch subsampling provides unbiased gradient estimators.
We propose Vecchia-based mini-batch subsampling, which provides unbiased gradient estimators.
arXiv Detail & Related papers (2022-02-25T21:22:38Z) - When are Iterative Gaussian Processes Reliably Accurate? [38.523693700243975]
Lanczos decompositions have achieved scalable Gaussian process inference with highly accurate point predictions.
We investigate CG tolerance, preconditioner rank, and Lanczos decomposition rank.
We show that LGS-BFB is a compelling for Iterative GPs, achieving convergence with fewer updates.
arXiv Detail & Related papers (2021-12-31T00:02:18Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Fast OSCAR and OWL Regression via Safe Screening Rules [97.28167655721766]
Ordered $L_1$ (OWL) regularized regression is a new regression analysis for high-dimensional sparse learning.
Proximal gradient methods are used as standard approaches to solve OWL regression.
We propose the first safe screening rule for OWL regression by exploring the order of the primal solution with the unknown order structure.
arXiv Detail & Related papers (2020-06-29T23:35:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.