Learning Representations of Instruments for Partial Identification of Treatment Effects
- URL: http://arxiv.org/abs/2410.08976v2
- Date: Mon, 14 Oct 2024 08:04:01 GMT
- Title: Learning Representations of Instruments for Partial Identification of Treatment Effects
- Authors: Jonas Schweisthal, Dennis Frauen, Maresa Schröder, Konstantin Hess, Niki Kilbertus, Stefan Feuerriegel,
- Abstract summary: We leverage arbitrary (potentially high-dimensional) instruments to estimate bounds on the conditional average treatment effect (CATE)
We propose a novel approach for partial identification through a mapping of instruments to a discrete representation space.
We derive a two-step procedure that learns tight bounds using a tailored neural partitioning of the latent instrument space.
- Score: 23.811079163083303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reliable estimation of treatment effects from observational data is important in many disciplines such as medicine. However, estimation is challenging when unconfoundedness as a standard assumption in the causal inference literature is violated. In this work, we leverage arbitrary (potentially high-dimensional) instruments to estimate bounds on the conditional average treatment effect (CATE). Our contributions are three-fold: (1) We propose a novel approach for partial identification through a mapping of instruments to a discrete representation space so that we yield valid bounds on the CATE. This is crucial for reliable decision-making in real-world applications. (2) We derive a two-step procedure that learns tight bounds using a tailored neural partitioning of the latent instrument space. As a result, we avoid instability issues due to numerical approximations or adversarial training. Furthermore, our procedure aims to reduce the estimation variance in finite-sample settings to yield more reliable estimates. (3) We show theoretically that our procedure obtains valid bounds while reducing estimation variance. We further perform extensive experiments to demonstrate the effectiveness across various settings. Overall, our procedure offers a novel path for practitioners to make use of potentially high-dimensional instruments (e.g., as in Mendelian randomization).
Related papers
- Targeted Learning for Variable Importance [23.428985354228672]
variable importance is one of the most widely used measures for interpreting machine learning.
We propose a novel method by employing the targeted learning (TL) framework, designed to enhance robustness in inference for variable importance metrics.
We show that it (i) retains the efficiency of traditional methods, (ii) maintains comparable computational complexity, and (iii) delivers improved accuracy, especially in finite sample contexts.
arXiv Detail & Related papers (2024-11-04T16:14:45Z) - Conformal Prediction for Causal Effects of Continuous Treatments [22.05182692864395]
We provide a novel conformal prediction method for potential outcomes of continuous treatments.
We account for the additional uncertainty introduced through propensity estimation so that our conformal prediction intervals are valid even if the propensity score is unknown.
To the best of our knowledge, we are the first to propose conformal prediction for continuous treatments when the propensity score is unknown and must be estimated from data.
arXiv Detail & Related papers (2024-07-03T13:34:33Z) - Doubly Robust Proximal Causal Learning for Continuous Treatments [56.05592840537398]
We propose a kernel-based doubly robust causal learning estimator for continuous treatments.
We show that its oracle form is a consistent approximation of the influence function.
We then provide a comprehensive convergence analysis in terms of the mean square error.
arXiv Detail & Related papers (2023-09-22T12:18:53Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on hidden confounding.
We prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods.
arXiv Detail & Related papers (2023-04-20T18:07:19Z) - Proximal Causal Learning of Conditional Average Treatment Effects [0.0]
We propose a tailored two-stage loss function for learning heterogeneous treatment effects.
Our proposed estimator can be implemented by off-the-shelf loss-minimizing machine learning methods.
arXiv Detail & Related papers (2023-01-26T02:56:36Z) - Counterfactual inference for sequential experiments [17.817769460838665]
We consider after-study statistical inference for sequentially designed experiments wherein multiple units are assigned treatments for multiple time points.
Our goal is to provide inference guarantees for the counterfactual mean at the smallest possible scale.
We illustrate our theory via several simulations and a case study involving data from a mobile health clinical trial HeartSteps.
arXiv Detail & Related papers (2022-02-14T17:24:27Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
A central obstacle in the objective assessment of treatment effect (TE) estimators in randomized control trials (RCTs) is the lack of ground truth (or validation set) to test their performance.
We provide a novel cross-validation-like methodology to address this challenge.
We evaluate our methodology across 709 RCTs implemented in the Amazon supply chain.
arXiv Detail & Related papers (2021-12-14T17:53:01Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
We propose a matching method that recovers direct treatment effects from randomized experiments where units are connected in an observed network.
Our method matches units almost exactly on counts of unique subgraphs within their neighborhood graphs.
arXiv Detail & Related papers (2020-03-02T15:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.