Conformal Prediction for Causal Effects of Continuous Treatments
- URL: http://arxiv.org/abs/2407.03094v2
- Date: Wed, 23 Oct 2024 10:09:10 GMT
- Title: Conformal Prediction for Causal Effects of Continuous Treatments
- Authors: Maresa Schröder, Dennis Frauen, Jonas Schweisthal, Konstantin Heß, Valentyn Melnychuk, Stefan Feuerriegel,
- Abstract summary: We provide a novel conformal prediction method for potential outcomes of continuous treatments.
We account for the additional uncertainty introduced through propensity estimation so that our conformal prediction intervals are valid even if the propensity score is unknown.
To the best of our knowledge, we are the first to propose conformal prediction for continuous treatments when the propensity score is unknown and must be estimated from data.
- Score: 22.05182692864395
- License:
- Abstract: Uncertainty quantification of causal effects is crucial for safety-critical applications such as personalized medicine. A powerful approach for this is conformal prediction, which has several practical benefits due to model-agnostic finite-sample guarantees. Yet, existing methods for conformal prediction of causal effects are limited to binary/discrete treatments and make highly restrictive assumptions such as known propensity scores. In this work, we provide a novel conformal prediction method for potential outcomes of continuous treatments. We account for the additional uncertainty introduced through propensity estimation so that our conformal prediction intervals are valid even if the propensity score is unknown. Our contributions are three-fold: (1) We derive finite-sample prediction intervals for potential outcomes of continuous treatments. (2) We provide an algorithm for calculating the derived intervals. (3) We demonstrate the effectiveness of the conformal prediction intervals in experiments on synthetic and real-world datasets. To the best of our knowledge, we are the first to propose conformal prediction for continuous treatments when the propensity score is unknown and must be estimated from data.
Related papers
- Learning Representations of Instruments for Partial Identification of Treatment Effects [23.811079163083303]
We leverage arbitrary (potentially high-dimensional) instruments to estimate bounds on the conditional average treatment effect (CATE)
We propose a novel approach for partial identification through a mapping of instruments to a discrete representation space.
We derive a two-step procedure that learns tight bounds using a tailored neural partitioning of the latent instrument space.
arXiv Detail & Related papers (2024-10-11T16:48:32Z) - Conformal Prediction for Dose-Response Models with Continuous Treatments [0.23213238782019321]
We present a novel methodology for generating prediction intervals for dose-response models.
Our method approximates local coverage for every treatment value by applying kernel functions as weights in weighted conformal prediction.
arXiv Detail & Related papers (2024-09-30T15:40:54Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Doubly Robust Proximal Causal Learning for Continuous Treatments [56.05592840537398]
We propose a kernel-based doubly robust causal learning estimator for continuous treatments.
We show that its oracle form is a consistent approximation of the influence function.
We then provide a comprehensive convergence analysis in terms of the mean square error.
arXiv Detail & Related papers (2023-09-22T12:18:53Z) - On the Expected Size of Conformal Prediction Sets [24.161372736642157]
We theoretically quantify the expected size of the prediction sets under the split conformal prediction framework.
As this precise formulation cannot usually be calculated directly, we derive point estimates and high-probability bounds interval.
We corroborate the efficacy of our results with experiments on real-world datasets for both regression and classification problems.
arXiv Detail & Related papers (2023-06-12T17:22:57Z) - Predicting the impact of treatments over time with uncertainty aware
neural differential equations [2.099922236065961]
We propose Counterfactual ODE, a novel method to predict the impact of treatments continuously over time.
We demonstrate over several longitudinal data sets that CF-ODE provides more accurate predictions and more reliable uncertainty estimates than previously available methods.
arXiv Detail & Related papers (2022-02-24T09:50:02Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
Epistemic uncertainty is part of out-of-sample prediction error due to the lack of knowledge of the learner.
We propose a principled approach for directly estimating epistemic uncertainty by learning to predict generalization error and subtracting an estimate of aleatoric uncertainty.
arXiv Detail & Related papers (2021-02-16T23:50:35Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
We propose a novel scalable method to learn double-robust representations for counterfactual predictions.
We make robust and efficient counterfactual predictions for both individual and average treatment effects.
The algorithm shows competitive performance with the state-of-the-art on real world and synthetic data.
arXiv Detail & Related papers (2020-10-15T16:39:26Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
We study the counterfactual prediction task in the setting where all relevant factors are captured in the historical data.
We propose a doubly-robust procedure for learning counterfactual prediction models in this setting.
arXiv Detail & Related papers (2020-06-30T15:49:05Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Conformal Inference of Counterfactuals and Individual Treatment Effects [6.810856082577402]
We propose a conformal inference-based approach that can produce reliable interval estimates for counterfactuals and individual treatment effects.
Existing methods suffer from a significant coverage deficit even in simple models.
arXiv Detail & Related papers (2020-06-11T01:03:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.