論文の概要: Hypothesis-only Biases in Large Language Model-Elicited Natural Language Inference
- arxiv url: http://arxiv.org/abs/2410.08996v1
- Date: Fri, 11 Oct 2024 17:09:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 20:36:41.693292
- Title: Hypothesis-only Biases in Large Language Model-Elicited Natural Language Inference
- Title(参考訳): 大規模言語モデルに基づく自然言語推論における仮説のみのバイアス
- Authors: Grace Proebsting, Adam Poliak,
- Abstract要約: 我々は,GPT-4,Llama-2,Mistral 7bを用いて,スタンフォードNLIコーパスの一部を再現した。
我々は仮説のみの分類器を訓練し、LLMによる仮説がアノテーションのアーティファクトを含んでいるかどうかを判断する。
我々の分析は、NLIにおける十分に証明されたバイアスがLLM生成データに持続できるという実証的な証拠を提供する。
- 参考スコア(独自算出の注目度): 3.0804372027733202
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We test whether replacing crowdsource workers with LLMs to write Natural Language Inference (NLI) hypotheses similarly results in annotation artifacts. We recreate a portion of the Stanford NLI corpus using GPT-4, Llama-2 and Mistral 7b, and train hypothesis-only classifiers to determine whether LLM-elicited hypotheses contain annotation artifacts. On our LLM-elicited NLI datasets, BERT-based hypothesis-only classifiers achieve between 86-96% accuracy, indicating these datasets contain hypothesis-only artifacts. We also find frequent "give-aways" in LLM-generated hypotheses, e.g. the phrase "swimming in a pool" appears in more than 10,000 contradictions generated by GPT-4. Our analysis provides empirical evidence that well-attested biases in NLI can persist in LLM-generated data.
- Abstract(参考訳): 我々は、クラウドソースワーカーをLLMに置き換えて自然言語推論(NLI)を書けるかどうかをテストする。
我々は,GPT-4,Llama-2,Mistral 7bを用いて,Stanford NLIコーパスの一部を再現し,仮説のみの分類器を訓練し,LLMによる仮説がアノテーションのアーティファクトを含むか否かを判断する。
LLMによるNLIデータセットでは、BERTベースの仮説のみの分類器が86~96%の精度で達成しており、これらのデータセットには仮説のみのアーティファクトが含まれていることを示している。
また, LLM 生成仮説では, GPT-4 が生成する1万以上の矛盾点に "swimming in a pool" というフレーズが出現し, しばしば "give-aways" が現れる。
我々の分析は、NLIにおける十分に証明されたバイアスがLLM生成データに持続できるという実証的な証拠を提供する。
関連論文リスト
- CSS: Contrastive Semantic Similarity for Uncertainty Quantification of LLMs [1.515687944002438]
テキストペアの不確実性を測定するための類似性特徴を求めるモジュールであるContrastive Semantic similarityを提案する。
我々は,3つの大規模言語モデル (LLM) を用いて,複数のベンチマーク質問応答データセットについて広範な実験を行った。
提案手法は,LLMの信頼性の高い応答を,同等のベースラインよりも高い精度で推定できることを示す。
論文 参考訳(メタデータ) (2024-06-05T11:35:44Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - Native Language Identification with Large Language Models [60.80452362519818]
我々はGPTモデルがNLI分類に熟練していることを示し、GPT-4は0ショット設定でベンチマーク11テストセットで91.7%の新たなパフォーマンス記録を樹立した。
また、従来の完全教師付き設定とは異なり、LLMは既知のクラスに制限されずにNLIを実行できることを示す。
論文 参考訳(メタデータ) (2023-12-13T00:52:15Z) - Are You Sure? Challenging LLMs Leads to Performance Drops in The
FlipFlop Experiment [82.60594940370919]
大規模言語モデル(LLM)のマルチターン動作を研究するためのFlipFlop実験を提案する。
モデルが平均46%の時間で回答を反転させ、全てのモデルが最初の予測と最終予測の間に精度を低下させ、平均17%の低下(FlipFlop効果)を示す。
我々はオープンソースのLLMで微調整実験を行い、合成されたデータに対する微調整は、性能劣化を60%低減させることができるが、サイコファンティックな振る舞いを完全には解決できないことを発見した。
論文 参考訳(メタデータ) (2023-11-14T23:40:22Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
大規模言語モデル(LLM)は、知識探索タスクにおける高い性能のため、知識ベースとして扱われてきた。
LLMが実際に正しい答えを連続的に生成する能力をどのように評価するか。
LLMの信頼性を直接測定するための新しい指標であるMOdel kNowledge relIabiliTy score (MONITOR)を提案する。
論文 参考訳(メタデータ) (2023-10-15T12:40:30Z) - Generating with Confidence: Uncertainty Quantification for Black-box Large Language Models [37.63939774027709]
自然言語生成(NLG)に特化した大規模言語モデル(LLM)が,最近,有望な機能を示すようになった。
我々は、信頼できない結果が無視されるか、さらなる評価のために得られるような、選択的なNLG*に適用し、いくつかの信頼/不確実性対策を提案し、比較する。
その結果, セマンティックな分散の簡易な測定は, LLM応答の質の信頼性を予測できることがわかった。
論文 参考訳(メタデータ) (2023-05-30T16:31:26Z) - Sources of Hallucination by Large Language Models on Inference Tasks [16.644096408742325]
大規模言語モデル (LLM) は自然言語推論 (NLI) が可能なと主張している。
本研究は, 制御実験を用いて行動調査を行う複数のLLMファミリーに関する一連の行動学的研究について述べる。
論文 参考訳(メタデータ) (2023-05-23T22:24:44Z) - Statistical Knowledge Assessment for Large Language Models [79.07989821512128]
ファクトイドの問題に関する様々なプロンプトを考慮すれば、大きな言語モデル(LLM)は事実的に正しい答えを確実に生成できるだろうか?
LLMの事実知識を評価する統計的手法であるKaRRを提案する。
この結果から,同じバックボーン構造を持つLLMの知識はスケーリング法則に則っており,命令追従データに基づくチューニングは,実際に正しいテキストを確実に生成するモデルの能力を損なう場合があることがわかった。
論文 参考訳(メタデータ) (2023-05-17T18:54:37Z) - The Internal State of an LLM Knows When It's Lying [18.886091925252174]
大規模言語モデル(LLM)は、様々なタスクにおいて例外的なパフォーマンスを示している。
彼らの最も顕著な欠点の1つは、自信のあるトーンで不正確または偽の情報を生成することである。
我々は, LLMの内部状態が文の真偽を明らかにするのに有効であることを示す証拠を提供する。
論文 参考訳(メタデータ) (2023-04-26T02:49:38Z) - Beyond Distributional Hypothesis: Let Language Models Learn Meaning-Text
Correspondence [45.9949173746044]
大規模事前学習言語モデル (PLM) が論理否定特性 (LNP) を満たさないことを示す。
そこで本研究では,意味テキスト対応を直接学習するための新しい中間訓練課題である「意味マッチング」を提案する。
このタスクにより、PLMは語彙意味情報を学習することができる。
論文 参考訳(メタデータ) (2022-05-08T08:37:36Z) - Automatically Identifying Semantic Bias in Crowdsourced Natural Language
Inference Datasets [78.6856732729301]
NLIデータセットに仮説を組み込んだ学習空間に"バイアスクラスタ"を見つけるために,モデル駆動で教師なしの手法を導入する。
データセットの仮説分布のセマンティックバイアスを改善するために、介入と追加のラベリングを行うことができる。
論文 参考訳(メタデータ) (2021-12-16T22:49:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。