Single V2 defect in 4H Silicon Carbide Schottky diode at low temperature
- URL: http://arxiv.org/abs/2410.09021v1
- Date: Fri, 11 Oct 2024 17:37:18 GMT
- Title: Single V2 defect in 4H Silicon Carbide Schottky diode at low temperature
- Authors: Timo Steidl, Pierre Kuna, Erik Hesselmeier-Hüttmann, Di Liu, Rainer Stöhr, Wolfgang Knolle, Misagh Ghezellou, Jawad Ul-Hassan, Maximilian Schober, Michel Bockstedte, Adam Gali, Vadim Vorobyov, Jörg Wrachtrup,
- Abstract summary: We study the behaviour of single silicon vacancy colour centres in a metal-semiconductor (Au/Ti/4H-SiC) epitaxial wafer device.
Our work shows the first demonstration of low temperature integration of a Schottky device with optical microstructures for quantum applications.
- Score: 1.2760250066401975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nanoelectrical and photonic integration of quantum optical components is crucial for scalable solid-state quantum technologies. Silicon carbide stands out as a material with mature quantum defects and a wide variety of applications in semiconductor industry. Here, we study the behaviour of single silicon vacancy (V2) colour centres in a metal-semiconductor (Au/Ti/4H-SiC) epitaxial wafer device, operating in a Schottky diode configuration. We explore the depletion of free carriers in the vicinity of the defect, as well as electrical tuning of the defect optical transition lines. By detecting single charge traps, we investigate their impact on V2 optical line width. Additionally, we investigate the charge-photon-dynamics of the V2 centre and find its dominating photon-ionisation processes characteristic rate and wavelength dependence. Finally, we probe the spin coherence properties of the V2 system in the junction and demonstrate several key protocols for quantum network applications. Our work shows the first demonstration of low temperature integration of a Schottky device with optical microstructures for quantum applications and paves the way towards fundamentally scalable and reproducible optical spin defect centres in solids.
Related papers
- Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Quantum bit with telecom wave-length emission from a simple defect in Si [4.1020458874018795]
Controlled creation and erasure of simple carbon interstitial defects have been successfully realised in silicon.
This defect has a stable structure near room temperature and emits in the wave-length where the signal loss is minimal.
We propose that a carbon interstitial can act as a quantum bit and may realize a spin-to-photon interface in CMOS-compatible platforms.
arXiv Detail & Related papers (2024-04-25T20:46:54Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Coherent Coupling of a Diamond Tin-Vacancy Center to a Tunable Open Microcavity [0.0]
We present a quantum photonic interface based on a single Tin-Vacancy center in a micrometer-thin diamond membrane coupled to a tunable open microcavity.
We observe a transmission dip of 50 % for low incident photon number per Purcell-reduced excited state lifetime, while the dip disappears as the emitter is saturated with higher photon number.
This work establishes a versatile and tunable platform for advanced quantum optics experiments and proof-of-principle demonstrations towards quantum networking with solid-state qubits.
arXiv Detail & Related papers (2023-11-14T19:00:02Z) - Cavity-Enhanced 2D Material Quantum Emitters Deterministically
Integrated with Silicon Nitride Microresonators [0.3518016233072556]
Optically active defects in 2D materials, such as hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDs), are an attractive class of single-photon emitters.
We demonstrate a novel approach to precisely align and embed hBN and TMDs within background-free silicon nitride microring resonators.
arXiv Detail & Related papers (2022-06-29T18:16:38Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Optical superradiance of a pair of color centers in an integrated
silicon-carbide-on-insulator microresonator [1.4085555227308877]
We report on the integration of near-transform-limited silicon defects into microdisk resonators fabricated in a CMOS-compatible 4H-Silicon Carbide-on-Insulator platform.
We demonstrate a single-emitter cooperativity of up to 0.8 as well as optical superradiance from a pair of color centers coupled to the same cavity mode.
arXiv Detail & Related papers (2022-02-10T05:33:28Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - Nanofabricated and integrated colour centres in silicon carbide with
high-coherence spin-optical properties [1.3246119976070139]
We demonstrate nanoscale fabrication of silicon vacancy centres (VSi) in 4H-SiC without deterioration of their intrinsic spin-optical properties.
We show nearly transform limited photon emission and record spin coherence times for single defects generated via ion implantation and in triangular cross section waveguides.
For the latter, we show further controlled operations on nearby nuclear spin qubits, which is crucial for fault-tolerant quantum information distribution.
arXiv Detail & Related papers (2021-09-10T08:42:14Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.