AI versus AI in Financial Crimes and Detection: GenAI Crime Waves to Co-Evolutionary AI
- URL: http://arxiv.org/abs/2410.09066v1
- Date: Mon, 30 Sep 2024 15:41:41 GMT
- Title: AI versus AI in Financial Crimes and Detection: GenAI Crime Waves to Co-Evolutionary AI
- Authors: Eren Kurshan, Dhagash Mehta, Bayan Bruss, Tucker Balch,
- Abstract summary: GenAI has a transformative effect on financial crimes and fraud.
As crime patterns become more intricate, personalized, and elusive, deploying effective defensive AI strategies becomes indispensable.
This paper examines the latest trends in AI/ML-driven financial crimes and detection systems.
- Score: 5.93311361936097
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adoption of AI by criminal entities across traditional and emerging financial crime paradigms has been a disturbing recent trend. Particularly concerning is the proliferation of generative AI, which has empowered criminal activities ranging from sophisticated phishing schemes to the creation of hard-to-detect deep fakes, and to advanced spoofing attacks to biometric authentication systems. The exploitation of AI by criminal purposes continues to escalate, presenting an unprecedented challenge. AI adoption causes an increasingly complex landscape of fraud typologies intertwined with cybersecurity vulnerabilities. Overall, GenAI has a transformative effect on financial crimes and fraud. According to some estimates, GenAI will quadruple the fraud losses by 2027 with a staggering annual growth rate of over 30% [27]. As crime patterns become more intricate, personalized, and elusive, deploying effective defensive AI strategies becomes indispensable. However, several challenges hinder the necessary progress of AI-based fincrime detection systems. This paper examines the latest trends in AI/ML-driven financial crimes and detection systems. It underscores the urgent need for developing agile AI defenses that can effectively counteract the rapidly emerging threats. It also aims to highlight the need for cooperation across the financial services industry to tackle the GenAI induced crime waves.
Related papers
- Security of and by Generative AI platforms [0.0]
This whitepaper highlights the dual importance of securing generative AI (genAI) platforms and leveraging genAI for cybersecurity.
As genAI technologies proliferate, their misuse poses significant risks, including data breaches, model tampering, and malicious content generation.
The whitepaper explores strategies for robust security frameworks around genAI systems, while also showcasing how genAI can empower organizations to anticipate, detect, and mitigate sophisticated cyber threats.
arXiv Detail & Related papers (2024-10-15T15:27:05Z) - "I Am the One and Only, Your Cyber BFF": Understanding the Impact of GenAI Requires Understanding the Impact of Anthropomorphic AI [55.99010491370177]
We argue that we cannot thoroughly map the social impacts of generative AI without mapping the social impacts of anthropomorphic AI.
anthropomorphic AI systems are increasingly prone to generating outputs that are perceived to be human-like.
arXiv Detail & Related papers (2024-10-11T04:57:41Z) - Review of Generative AI Methods in Cybersecurity [0.6990493129893112]
This paper provides a comprehensive overview of the current state-of-the-art deployments of Generative AI (GenAI)
It covers assaults, jailbreaking, and applications of prompt injection and reverse psychology.
It also provides the various applications of GenAI in cybercrimes, such as automated hacking, phishing emails, social engineering, reverse cryptography, creating attack payloads, and creating malware.
arXiv Detail & Related papers (2024-03-13T17:05:05Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - Decoding the Threat Landscape : ChatGPT, FraudGPT, and WormGPT in Social Engineering Attacks [0.0]
Generative AI models have revolutionized the field of cyberattacks, empowering malicious actors to craft convincing and personalized phishing lures.
These models, ChatGPT, FraudGPT, and WormGPT, have augmented existing threats and ushered in new dimensions of risk.
To counter these threats, we outline a range of strategies, including traditional security measures, AI-powered security solutions, and collaborative approaches in cybersecurity.
arXiv Detail & Related papers (2023-10-09T10:31:04Z) - From ChatGPT to ThreatGPT: Impact of Generative AI in Cybersecurity and
Privacy [0.0]
This research paper highlights the limitations, challenges, potential risks, and opportunities of GenAI in the domain of cybersecurity and privacy.
The paper investigates how cyber offenders can use the GenAI tools in developing cyber attacks.
We will also discuss the social, legal, and ethical implications of ChatGPT.
arXiv Detail & Related papers (2023-07-03T00:36:57Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
The workshop will focus on the application of AI to problems in cyber security.
Cyber systems generate large volumes of data, utilizing this effectively is beyond human capabilities.
arXiv Detail & Related papers (2022-02-28T18:27:41Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z) - Towards Artificial Intelligence Enabled Financial Crime Detection [0.0]
We study and analyse the recent works done in financial crime detection.
We present a novel model to detect money laundering cases with minimum human intervention needs.
arXiv Detail & Related papers (2021-05-23T06:57:25Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.