An Innovative Attention-based Ensemble System for Credit Card Fraud Detection
- URL: http://arxiv.org/abs/2410.09069v1
- Date: Tue, 1 Oct 2024 09:56:23 GMT
- Title: An Innovative Attention-based Ensemble System for Credit Card Fraud Detection
- Authors: Mehdi Hosseini Chagahi, Niloufar Delfan, Saeed Mohammadi Dashtaki, Behzad Moshiri, Md. Jalil Piran,
- Abstract summary: We present a unique attention-based ensemble model for detecting credit card fraud.
The ensemble model attains an accuracy of 99.95% with an area under the curve (AUC) of 1.
- Score: 5.486205584465161
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Detecting credit card fraud (CCF) holds significant importance due to its role in safeguarding consumers from unauthorized transactions that have the potential to result in financial detriment and negative impacts on their credit rating. It aids financial institutions in upholding the reliability of their payment mechanisms and circumventing the expensive procedure of compensating for deceitful transactions. The utilization of Artificial Intelligence methodologies demonstrated remarkable efficacy in the identification of credit card fraud instances. Within this study, we present a unique attention-based ensemble model. This model is enhanced by adding an attention layer for integration of first layer classifiers' predictions and a selection layer for choosing the best integrated value. The attention layer is implemented with two aggregation operators: dependent ordered weighted averaging (DOWA) and induced ordered weighted averaging (IOWA). The performance of the IOWA operator is very close to the learning algorithm in neural networks which is based on the gradient descent optimization method, and performing the DOWA operator is based on weakening the classifiers that make outlier predictions compared to other learners. Both operators have a sufficient level of complexity for the recognition of complex patterns. Accuracy and diversity are the two criteria we use for selecting the classifiers whose predictions are to be integrated by the two aggregation operators. Using a bootstrap forest, we identify the 13 most significant features of the dataset that contribute the most to CCF detection and use them to feed the proposed model. Exhibiting its efficacy, the ensemble model attains an accuracy of 99.95% with an area under the curve (AUC) of 1.
Related papers
- Heterogeneous Graph Auto-Encoder for CreditCard Fraud Detection [0.7864304771129751]
This paper proposes a novel approach for credit card fraud detection using Graph Neural Networks (GNNs) with attention mechanisms applied to heterogeneous graph representations of financial data.
The proposed model outperforms benchmark algorithms such as Graph Sage and FI-GRL, achieving a superior AUC-PR of 0.89 and an F1-score of 0.81.
arXiv Detail & Related papers (2024-10-10T17:05:27Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
We introduce LoRA-Ensemble, a parameter-efficient deep ensemble method for self-attention networks.
By employing a single pre-trained self-attention network with weights shared across all members, we train member-specific low-rank matrices for the attention projections.
Our method exhibits superior calibration compared to explicit ensembles and achieves similar or better accuracy across various prediction tasks and datasets.
arXiv Detail & Related papers (2024-05-23T11:10:32Z) - Enhancing Credit Card Fraud Detection A Neural Network and SMOTE Integrated Approach [4.341096233663623]
This research proposes an innovative methodology combining Neural Networks (NN) and Synthet ic Minority Over-sampling Technique (SMOTE) to enhance the detection performance.
The study addresses the inherent imbalance in credit card transaction data, focusing on technical advancements for robust and precise fraud detection.
arXiv Detail & Related papers (2024-02-27T02:26:04Z) - Securing Transactions: A Hybrid Dependable Ensemble Machine Learning
Model using IHT-LR and Grid Search [2.4374097382908477]
We introduce a state-of-the-art hybrid ensemble (ENS) Machine learning (ML) model that intelligently combines multiple algorithms to enhance fraud identification.
Our experiments are conducted on a publicly available credit card dataset comprising 284,807 transactions.
The proposed model achieves impressive accuracy rates of 99.66%, 99.73%, 98.56%, and 99.79%, and a perfect 100% for the DT, RF, KNN, and ENS models, respectively.
arXiv Detail & Related papers (2024-02-22T09:01:42Z) - Explainable Fraud Detection with Deep Symbolic Classification [4.1205832766381985]
We present Deep Classification, an extension of the Deep Symbolic Regression framework to classification problems.
Because the functions are mathematical expressions that are in closed-form and concise, the model is inherently explainable both at the level of a single classification decision and the model's decision process.
An evaluation on the PaySim data set demonstrates competitive predictive performance with state-of-the-art models, while surpassing them in terms of explainability.
arXiv Detail & Related papers (2023-12-01T13:50:55Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Fraud Detection Using Optimized Machine Learning Tools Under Imbalance
Classes [0.304585143845864]
Fraud detection with smart versions of machine learning (ML) tools is essential to assure safety.
We investigate four state-of-the-art ML techniques, namely, logistic regression, decision trees, random forest, and extreme gradient boost.
For phishing website URLs and credit card fraud transaction datasets, the results indicate that extreme gradient boost trained on the original data shows trustworthy performance.
arXiv Detail & Related papers (2022-09-04T15:30:23Z) - Be Your Own Neighborhood: Detecting Adversarial Example by the
Neighborhood Relations Built on Self-Supervised Learning [64.78972193105443]
This paper presents a novel AE detection framework, named trustworthy for predictions.
performs the detection by distinguishing the AE's abnormal relation with its augmented versions.
An off-the-shelf Self-Supervised Learning (SSL) model is used to extract the representation and predict the label.
arXiv Detail & Related papers (2022-08-31T08:18:44Z) - The Overlooked Classifier in Human-Object Interaction Recognition [82.20671129356037]
We encode the semantic correlation among classes into the classification head by initializing the weights with language embeddings of HOIs.
We propose a new loss named LSE-Sign to enhance multi-label learning on a long-tailed dataset.
Our simple yet effective method enables detection-free HOI classification, outperforming the state-of-the-arts that require object detection and human pose by a clear margin.
arXiv Detail & Related papers (2022-03-10T23:35:00Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Dual Adversarial Auto-Encoders for Clustering [152.84443014554745]
We propose Dual Adversarial Auto-encoder (Dual-AAE) for unsupervised clustering.
By performing variational inference on the objective function of Dual-AAE, we derive a new reconstruction loss which can be optimized by training a pair of Auto-encoders.
Experiments on four benchmarks show that Dual-AAE achieves superior performance over state-of-the-art clustering methods.
arXiv Detail & Related papers (2020-08-23T13:16:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.