論文の概要: Federated Learning for Data Market: Shapley-UCB for Seller Selection and Incentives
- arxiv url: http://arxiv.org/abs/2410.09107v1
- Date: Thu, 10 Oct 2024 03:50:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 16:38:28.645158
- Title: Federated Learning for Data Market: Shapley-UCB for Seller Selection and Incentives
- Title(参考訳): データ市場のためのフェデレーションラーニング:販売者選択とインセンティブのためのShapley-UCB
- Authors: Kongyang Chen, Zeming Xu,
- Abstract要約: 本稿では,フェデレート学習アーキテクチャに基づくトランザクションフレームワークを提案し,販売者選択アルゴリズムとインセンティブ補償機構を設計する。
具体的には、グラデーション類似性とシェープリーアルゴリズムを用いて販売者の貢献度を正確に評価する。
トレーニング後、販売者のトレーニングへの参加に応じて公正な補償が行われる。
- 参考スコア(独自算出の注目度): 0.3069335774032178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, research on the data trading market has been continuously deepened. In the transaction process, there is an information asymmetry process between agents and sellers. For sellers, direct data delivery faces the risk of privacy leakage. At the same time, sellers are not willing to provide data. A reasonable compensation method is needed to encourage sellers to provide data resources. For agents, the quality of data provided by sellers needs to be examined and evaluated. Otherwise, agents may consume too much cost and resources by recruiting sellers with poor data quality. Therefore, it is necessary to build a complete delivery process for the interaction between sellers and agents in the trading market so that the needs of sellers and agents can be met. The federated learning architecture is widely used in the data market due to its good privacy protection. Therefore, in this work, in response to the above challenges, we propose a transaction framework based on the federated learning architecture, and design a seller selection algorithm and incentive compensation mechanism. Specifically, we use gradient similarity and Shapley algorithm to fairly and accurately evaluate the contribution of sellers, and use the modified UCB algorithm to select sellers. After the training, fair compensation is made according to the seller's participation in the training. In view of the above work, we designed reasonable experiments for demonstration and obtained results, proving the rationality and effectiveness of the framework.
- Abstract(参考訳): 近年、データトレーディング市場の研究は継続的に深化している。
トランザクションプロセスでは、エージェントと売り手の間で情報非対称性プロセスが存在する。
売り手にとって、直接データ配信はプライバシー漏洩のリスクに直面している。
同時に、売り手はデータを提供しようとしない。
データリソースの提供を促すためには,適切な補償方法が必要である。
エージェントに対しては、販売者が提供したデータの品質を調べ、評価する必要がある。
そうでなければ、エージェントはデータ品質の低い売り手を採用することで、コストとリソースを過大に消費する可能性がある。
そのため、売り手と売り手との取引の完全な配送プロセスを構築し、売り手と売り手のニーズを満たせるようにする必要がある。
フェデレートされた学習アーキテクチャは、優れたプライバシ保護のため、データマーケットで広く使用されている。
そこで本研究では,上記の課題に対応するために,フェデレート学習アーキテクチャに基づくトランザクションフレームワークを提案し,販売者選択アルゴリズムとインセンティブ補償機構を設計する。
具体的には、勾配類似度とShapleyアルゴリズムを用いて販売者の貢献度を正確に評価し、修正されたUPBアルゴリズムを用いて販売者を選択する。
トレーニング後、販売者のトレーニングへの参加に応じて公正な補償が行われる。
以上の研究から,実証のための合理的な実験を設計し,フレームワークの合理性と有効性を証明する結果を得た。
関連論文リスト
- Private, Augmentation-Robust and Task-Agnostic Data Valuation Approach for Data Marketplace [56.78396861508909]
PriArTaは、買い手の既存のデータセットと売り手のデータセットの分布の間の距離を計算するアプローチである。
PriArTaは通信効率が良く、買い手は各売り手からデータセット全体にアクセスすることなくデータセットを評価することができる。
論文 参考訳(メタデータ) (2024-11-01T17:13:14Z) - Data Measurements for Decentralized Data Markets [18.99870296998749]
分散データ市場は、機械学習のためのより公平なデータ取得を提供することができる。
我々は、データ購入者が関連する多様なデータセットを持つ売り手を見つけることができるように、フェデレートされたデータ測定をベンチマークして提案する。
論文 参考訳(メタデータ) (2024-06-06T17:03:51Z) - Language Models Can Reduce Asymmetry in Information Markets [100.38786498942702]
我々は、言語モデルを利用した知的エージェントが外部参加者に代わって情報を売買する、オープンソースのシミュレートされたデジタルマーケットプレースを紹介した。
このマーケットプレースを実現する中心的なメカニズムはエージェントの二重機能であり、特権情報の品質を評価する能力を持つと同時に、忘れる能力も備えている。
適切に行動するためには、エージェントは合理的な判断をし、生成されたサブクエリを通じて市場を戦略的に探索し、購入した情報から回答を合成する必要がある。
論文 参考訳(メタデータ) (2024-03-21T14:48:37Z) - A Bargaining-based Approach for Feature Trading in Vertical Federated
Learning [54.51890573369637]
本稿では,垂直的フェデレートラーニング(VFL)において,経済的に効率的な取引を促進するための交渉型特徴取引手法を提案する。
当社のモデルでは,収益ベース最適化の目的を考慮し,パフォーマンスゲインベースの価格設定を取り入れている。
論文 参考訳(メタデータ) (2024-02-23T10:21:07Z) - Seller-side Outcome Fairness in Online Marketplaces [8.29306513718005]
本稿では,売り手側の結果フェアネスの概念を導入し,収集したリコメンデーション報酬とフェアネス指標のバランスをとる最適化モデルを構築した。
実際のeコマースデータセットに関する数値実験では,収集したGross Merchandise Value(GMV)や総購入数といった指標を損なうことなく,販売者の公正度を測ることのできるアルゴリズムが示されている。
論文 参考訳(メタデータ) (2023-12-06T02:58:49Z) - Salespeople vs SalesBot: Exploring the Role of Educational Value in
Conversational Recommender Systems [78.84530426424838]
既存の会話レコメンデータシステムは、ユーザのバックグラウンド知識の欠如をよく見落とし、好みの収集にのみ焦点をあてる。
このようなシステムのシミュレーションと評価を容易にするフレームワークであるSalesOpsを紹介する。
私たちは、フレームワークの両側をシミュレートできるLLMベースのエージェントであるSalesBotとShopperBotを構築しています。
論文 参考訳(メタデータ) (2023-10-26T19:44:06Z) - Federated Learning Incentive Mechanism under Buyers' Auction Market [2.316580879469592]
オークションベースのフェデレートラーニング(AFL)は、利己的なデータコンシューマとデータオーナ間のオープンなコラボレーションを可能にする。
我々は、購入者の市場における価格変動を説明するために、調達オークションの枠組みに適応する。
信頼性とデータ品質の高いクライアントを選択し、外部からの攻撃を防ぐために、ブロックチェーンベースの評判メカニズムを利用する。
論文 参考訳(メタデータ) (2023-09-10T16:09:02Z) - Addressing Budget Allocation and Revenue Allocation in Data Market
Environments Using an Adaptive Sampling Algorithm [14.206050847214652]
本稿では,予算配分と収益配分を同時に線形時間で解く新しいアルゴリズムを提案する。
新しいアルゴリズムでは、モデルに最も貢献しているプロバイダからデータを選択するアダプティブサンプリングプロセスを採用している。
予算を効率的に利用し,収益配分特性がShapleyに類似していることを示すアルゴリズムを理論的に保証する。
論文 参考訳(メタデータ) (2023-06-05T02:28:19Z) - Data Sharing Markets [95.13209326119153]
我々は、各エージェントがデータの買い手および売り手の両方になり得る設定について検討する。
両データ交換(データ付きトレーディングデータ)と一方データ交換(お金付きトレーディングデータ)の2つの事例を考察する。
論文 参考訳(メタデータ) (2021-07-19T06:00:34Z) - OSOUM Framework for Trading Data Research [79.0383470835073]
私たちは、私たちの知る限り、最初のオープンソースのシミュレーションプラットフォームであるOpen SOUrce Market Simulator(OSOUM)を提供して、トレーディング市場、特にデータ市場を分析します。
我々は、購入に利用可能なさまざまなデータセットを所有する売り手と、購入に有効な適切なデータセットを検索する買い手という2つのタイプのエージェントからなる、特定のデータ市場モデルを記述し、実装する。
データ市場を扱うための商用フレームワークはすでに存在していますが、購入者および販売者の両方が(データ)市場に参加することの可能な振る舞いをシミュレートするための、自由で広範なエンドツーエンドの研究ツールを提供しています。
論文 参考訳(メタデータ) (2021-02-18T09:20:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。