BreachSeek: A Multi-Agent Automated Penetration Tester
- URL: http://arxiv.org/abs/2409.03789v1
- Date: Sat, 31 Aug 2024 19:15:38 GMT
- Title: BreachSeek: A Multi-Agent Automated Penetration Tester
- Authors: Ibrahim Alshehri, Adnan Alshehri, Abdulrahman Almalki, Majed Bamardouf, Alaqsa Akbar,
- Abstract summary: BreachSeek is an AI-driven multi-agent software platform that identifies and exploits vulnerabilities without human intervention.
In preliminary evaluations, BreachSeek successfully exploited vulnerabilities in exploitable machines within local networks.
Future developments aim to expand its capabilities, positioning it as an indispensable tool for cybersecurity professionals.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing complexity and scale of modern digital environments have exposed significant gaps in traditional cybersecurity penetration testing methods, which are often time-consuming, labor-intensive, and unable to rapidly adapt to emerging threats. There is a critical need for an automated solution that can efficiently identify and exploit vulnerabilities across diverse systems without extensive human intervention. BreachSeek addresses this challenge by providing an AI-driven multi-agent software platform that leverages Large Language Models (LLMs) integrated through LangChain and LangGraph in Python. This system enables autonomous agents to conduct thorough penetration testing by identifying vulnerabilities, simulating a variety of cyberattacks, executing exploits, and generating comprehensive security reports. In preliminary evaluations, BreachSeek successfully exploited vulnerabilities in exploitable machines within local networks, demonstrating its practical effectiveness. Future developments aim to expand its capabilities, positioning it as an indispensable tool for cybersecurity professionals.
Related papers
- In-Context Experience Replay Facilitates Safety Red-Teaming of Text-to-Image Diffusion Models [97.82118821263825]
Text-to-image (T2I) models have shown remarkable progress, but their potential to generate harmful content remains a critical concern in the ML community.
We propose ICER, a novel red-teaming framework that generates interpretable and semantic meaningful problematic prompts.
Our work provides crucial insights for developing more robust safety mechanisms in T2I systems.
arXiv Detail & Related papers (2024-11-25T04:17:24Z) - Countering Autonomous Cyber Threats [40.00865970939829]
Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
arXiv Detail & Related papers (2024-10-23T22:46:44Z) - Multi-Agent Actor-Critics in Autonomous Cyber Defense [0.5261718469769447]
Multi-Agent Deep Reinforcement Learning (MADRL) presents a promising approach to enhancing the efficacy and resilience of autonomous cyber operations.
We demonstrate each agent is able to learn quickly and counter act on the threats autonomously using MADRL in simulated cyber-attack scenarios.
arXiv Detail & Related papers (2024-10-11T15:15:09Z) - Generative AI in Cybersecurity [0.0]
Generative Artificial Intelligence (GAI) has been pivotal in reshaping the field of data analysis, pattern recognition, and decision-making processes.
As GAI rapidly progresses, it outstrips the current pace of cybersecurity protocols and regulatory frameworks.
The study highlights the critical need for organizations to proactively identify and develop more complex defensive strategies to counter the sophisticated employment of GAI in malware creation.
arXiv Detail & Related papers (2024-05-02T19:03:11Z) - Advancing Security in AI Systems: A Novel Approach to Detecting
Backdoors in Deep Neural Networks [3.489779105594534]
backdoors can be exploited by malicious actors on deep neural networks (DNNs) and cloud services for data processing.
Our approach leverages advanced tensor decomposition algorithms to meticulously analyze the weights of pre-trained DNNs and distinguish between backdoored and clean models.
This advancement enhances the security of deep learning and AI in networked systems, providing essential cybersecurity against evolving threats in emerging technologies.
arXiv Detail & Related papers (2024-03-13T03:10:11Z) - Software Repositories and Machine Learning Research in Cyber Security [0.0]
The integration of robust cyber security defenses has become essential across all phases of software development.
Attempts have been made to leverage topic modeling and machine learning for the detection of these early-stage vulnerabilities in the software requirements process.
arXiv Detail & Related papers (2023-11-01T17:46:07Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
In this work, we exemplify the potential threat of malicious actors using deep reinforcement learning to train automated agents.
We present an agent that uses a state-of-the-art reinforcement learning algorithm to perform local privilege escalation.
Our agent is usable for generating realistic attack sensor data for training and evaluating intrusion detection systems.
arXiv Detail & Related papers (2021-10-04T12:20:46Z) - A System for Efficiently Hunting for Cyber Threats in Computer Systems
Using Threat Intelligence [78.23170229258162]
We build ThreatRaptor, a system that facilitates cyber threat hunting in computer systems using OSCTI.
ThreatRaptor provides (1) an unsupervised, light-weight, and accurate NLP pipeline that extracts structured threat behaviors from unstructured OSCTI text, (2) a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities, and (3) a query synthesis mechanism that automatically synthesizes a TBQL query from the extracted threat behaviors.
arXiv Detail & Related papers (2021-01-17T19:44:09Z) - Enabling Efficient Cyber Threat Hunting With Cyber Threat Intelligence [94.94833077653998]
ThreatRaptor is a system that facilitates threat hunting in computer systems using open-source Cyber Threat Intelligence (OSCTI)
It extracts structured threat behaviors from unstructured OSCTI text and uses a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities.
Evaluations on a broad set of attack cases demonstrate the accuracy and efficiency of ThreatRaptor in practical threat hunting.
arXiv Detail & Related papers (2020-10-26T14:54:01Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.