論文の概要: L3Cube-MahaSum: A Comprehensive Dataset and BART Models for Abstractive Text Summarization in Marathi
- arxiv url: http://arxiv.org/abs/2410.09184v1
- Date: Fri, 11 Oct 2024 18:37:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 15:53:25.725652
- Title: L3Cube-MahaSum: A Comprehensive Dataset and BART Models for Abstractive Text Summarization in Marathi
- Title(参考訳): L3Cube-MahaSum:マラタイにおける抽象テキスト要約のための包括的データセットとBARTモデル
- Authors: Pranita Deshmukh, Nikita Kulkarni, Sanhita Kulkarni, Kareena Manghani, Raviraj Joshi,
- Abstract要約: 本稿では,マラタイにおける多種多様なニュース記事の大規模コレクションであるMahaSUMデータセットについて述べる。
データセットは、広範囲のオンラインニュースソースから記事を取り除き、抽象的な要約を手作業で検証することで作成されました。
我々は、MahaSUMデータセットを使用して、Indic言語用に調整されたBARTモデルの変種であるIndicBARTモデルをトレーニングする。
- 参考スコア(独自算出の注目度): 0.4194295877935868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the MahaSUM dataset, a large-scale collection of diverse news articles in Marathi, designed to facilitate the training and evaluation of models for abstractive summarization tasks in Indic languages. The dataset, containing 25k samples, was created by scraping articles from a wide range of online news sources and manually verifying the abstract summaries. Additionally, we train an IndicBART model, a variant of the BART model tailored for Indic languages, using the MahaSUM dataset. We evaluate the performance of our trained models on the task of abstractive summarization and demonstrate their effectiveness in producing high-quality summaries in Marathi. Our work contributes to the advancement of natural language processing research in Indic languages and provides a valuable resource for future research in this area using state-of-the-art models. The dataset and models are shared publicly at https://github.com/l3cube-pune/MarathiNLP
- Abstract(参考訳): 本稿では,マラタイにおける多種多様なニュース記事の大規模収集であるMahaSUMデータセットについて述べる。
25kのサンプルを含むデータセットは、広範囲のオンラインニュースソースから記事を取り除き、抽象的な要約を手作業で検証することで作成されました。
さらに、MahaSUMデータセットを使用して、Indic言語用に調整されたBARTモデルの変種であるIndicBARTモデルをトレーニングする。
抽象的な要約作業において,訓練されたモデルの性能を評価し,マラタイにおける高品質な要約を作成する上での有効性を実証した。
本研究は,Indic言語における自然言語処理研究の進展に寄与し,最先端のモデルを用いた今後の研究に有用な資源を提供する。
データセットとモデルはhttps://github.com/l3cube-pune/MarathiNLPで公開されています。
関連論文リスト
- SPRING Lab IITM's submission to Low Resource Indic Language Translation Shared Task [10.268444449457956]
我々は,Khasi,Mizo,Manipuri,Assameseの4つの低リソースIndic言語に対して,ロバストな翻訳モデルを構築した。
このアプローチには、データ収集と前処理からトレーニングと評価まで、包括的なパイプラインが含まれています。
バイリンガルデータの不足に対処するために,ミゾとカシのモノリンガルデータセットの逆翻訳手法を用いる。
論文 参考訳(メタデータ) (2024-11-01T16:39:03Z) - From News to Summaries: Building a Hungarian Corpus for Extractive and Abstractive Summarization [0.19107347888374507]
HunSum-2は、抽象的および抽出的要約モデルのトレーニングに適したオープンソースのハンガリー語コーパスである。
データセットは、徹底的なクリーニングを行うCommon Crawlコーパスのセグメントから組み立てられる。
論文 参考訳(メタデータ) (2024-04-04T16:07:06Z) - Walia-LLM: Enhancing Amharic-LLaMA by Integrating Task-Specific and Generative Datasets [2.8123257987021058]
タスク固有および生成データセットを統合することでLLaMA-2-Amharicモデルの強化に注力する。
我々はAmharic命令の微調整データセットとLLaMA-2-Amharicモデルをコンパイルする。
微調整されたモデルは、異なるNLPタスクで有望な結果を示す。
論文 参考訳(メタデータ) (2024-02-12T19:25:11Z) - Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research [139.69207791947738]
ドルマ (Dolma) は、ウェブコンテンツ、科学論文、コード、パブリックドメインの書籍、ソーシャルメディア、百科事典の素材を多用した3トリルの英語コーパスである。
我々はDolmaの設計原則、その構築の詳細、内容の要約を含む、Dolmaを文書化します。
我々は、重要なデータキュレーションの実践について学んだことを共有するために、Dolmaの中間状態の分析と実験結果を示す。
論文 参考訳(メタデータ) (2024-01-31T20:29:50Z) - Cross-Lingual NER for Financial Transaction Data in Low-Resource
Languages [70.25418443146435]
半構造化テキストデータにおける言語間名前認識のための効率的なモデリングフレームワークを提案する。
我々は2つの独立したSMSデータセットを英語とアラビア語で使用し、それぞれが半構造化された銀行取引情報を持っている。
わずか30のラベル付きサンプルにアクセスすることで、我々のモデルは、英語からアラビア語までの商人、金額、その他の分野の認識を一般化することができる。
論文 参考訳(メタデータ) (2023-07-16T00:45:42Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
既存の機械翻訳(NMT)研究は主にデータセット固有のモデルの開発に焦点を当てている。
我々は,NMT(UMLNMT)のための統一モデル学習モデル(Unified Model Learning for NMT)を提案する。
OurNMTは、データセット固有のモデルよりも大幅に改善され、モデルデプロイメントコストが大幅に削減される。
論文 参考訳(メタデータ) (2023-05-04T12:21:52Z) - GAE-ISumm: Unsupervised Graph-Based Summarization of Indian Languages [5.197307534263253]
文書要約は、テキスト文書の正確で一貫性のある要約を作成することを目的としている。
多くのディープラーニングの要約モデルは、主に英語向けに開発されており、大きなトレーニングコーパスを必要とすることが多い。
本稿では,テキスト文書から要約を抽出する教師なしのIndic summarizationモデルであるGAE-ISummを提案する。
論文 参考訳(メタデータ) (2022-12-25T17:20:03Z) - mFACE: Multilingual Summarization with Factual Consistency Evaluation [79.60172087719356]
抽象的な要約は、事前訓練された言語モデルと大規模データセットの可用性のおかげで、近年で新たな関心を集めている。
有望な結果にもかかわらず、現在のモデルはいまだに現実的に矛盾した要約を生み出すことに苦しむ。
事実整合性評価モデルを利用して、多言語要約を改善する。
論文 参考訳(メタデータ) (2022-12-20T19:52:41Z) - Building Machine Translation Systems for the Next Thousand Languages [102.24310122155073]
1500以上の言語を対象としたクリーンでWebマイニングされたデータセットの構築、低サービス言語のための実践的なMTモデルの開発、これらの言語に対する評価指標の限界の検証という3つの研究領域における結果について述べる。
我々の研究は、現在調査中の言語のためのMTシステムの構築に取り組んでいる実践者にとって有用な洞察を提供し、データスパース設定における多言語モデルの弱点を補完する研究の方向性を強調したいと考えています。
論文 参考訳(メタデータ) (2022-05-09T00:24:13Z) - Experimental Evaluation of Deep Learning models for Marathi Text
Classification [0.0]
CNN, LSTM, ULMFiT, BERT ベースのモデルを, 2つの公開 Marathi テキスト分類データセットで評価する。
CNNとLSTMに基づく基本単層モデルとFastTextの埋め込みは、利用可能なデータセット上でBERTベースのモデルと同等に動作することを示す。
論文 参考訳(メタデータ) (2021-01-13T06:21:27Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
言語間の要約は、ソース言語の記事に対する対象言語の要約を作成することを目的としている。
本稿では,翻訳のような言語間タスクと,マスク付き言語モデルのようなモノリンガルタスクの両方を活用する混合言語事前学習に基づくソリューションを提案する。
本モデルでは,2.82(中国語)と1.15(中国語,英語)のROUGE-1スコアを最先端の結果に対して改善する。
論文 参考訳(メタデータ) (2020-10-18T00:21:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。