論文の概要: Enhanced Kalman with Adaptive Appearance Motion SORT for Grounded Generic Multiple Object Tracking
- arxiv url: http://arxiv.org/abs/2410.09243v1
- Date: Fri, 11 Oct 2024 20:38:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 15:33:30.166216
- Title: Enhanced Kalman with Adaptive Appearance Motion SORT for Grounded Generic Multiple Object Tracking
- Title(参考訳): 適応外見運動SORTを用いた拡張カルマンによる地中ジェネリック多目的追跡
- Authors: Duy Le Dinh Anh, Kim Hoang Tran, Quang-Thuc Nguyen, Ngan Hoang Le,
- Abstract要約: Grounded-GMOTは、ユーザーが自然言語記述子を通じてビデオ内の複数のジェネリックオブジェクトを追跡することができる革新的なトラッキングパラダイムである。
コントリビューションはG2MOTデータセットの導入から始まり、多様なジェネリックオブジェクトを特徴とするビデオのコレクションを含む。
そこで本研究では,視覚的外観を動作キューと効果的に統合するだけでなく,カルマンフィルタを改良した新しいトラッキング手法KAM-SORTを提案する。
- 参考スコア(独自算出の注目度): 0.08333024746293495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite recent progress, Multi-Object Tracking (MOT) continues to face significant challenges, particularly its dependence on prior knowledge and predefined categories, complicating the tracking of unfamiliar objects. Generic Multiple Object Tracking (GMOT) emerges as a promising solution, requiring less prior information. Nevertheless, existing GMOT methods, primarily designed as OneShot-GMOT, rely heavily on initial bounding boxes and often struggle with variations in viewpoint, lighting, occlusion, and scale. To overcome the limitations inherent in both MOT and GMOT when it comes to tracking objects with specific generic attributes, we introduce Grounded-GMOT, an innovative tracking paradigm that enables users to track multiple generic objects in videos through natural language descriptors. Our contributions begin with the introduction of the G2MOT dataset, which includes a collection of videos featuring a wide variety of generic objects, each accompanied by detailed textual descriptions of their attributes. Following this, we propose a novel tracking method, KAM-SORT, which not only effectively integrates visual appearance with motion cues but also enhances the Kalman filter. KAM-SORT proves particularly advantageous when dealing with objects of high visual similarity from the same generic category in GMOT scenarios. Through comprehensive experiments, we demonstrate that Grounded-GMOT outperforms existing OneShot-GMOT approaches. Additionally, our extensive comparisons between various trackers highlight KAM-SORT's efficacy in GMOT, further establishing its significance in the field. Project page: https://UARK-AICV.github.io/G2MOT. The source code and dataset will be made publicly available.
- Abstract(参考訳): 近年の進歩にもかかわらず、MOT(Multi-Object Tracking)は、特に事前知識や事前定義されたカテゴリに依存し、不慣れなオブジェクトの追跡を複雑化するなど、重大な課題に直面し続けている。
Generic Multiple Object Tracking (GMOT) は、より少ない事前情報を必要とする、有望なソリューションとして登場した。
それでも、既存のGMOTメソッドは、主にOneShot-GMOTとして設計され、初期バウンディングボックスに大きく依存しており、しばしば視点、照明、閉塞、スケールのバリエーションに悩まされている。
特定のジェネリック属性を持つオブジェクトのトラッキングにおいて,MOTとGMOTの両方に固有の制限を克服するために,自然言語記述子によるビデオ内の複数のジェネリックオブジェクトのトラッキングを可能にする,革新的なトラッキングパラダイムであるGrounded-GMOTを紹介した。
コントリビューションはG2MOTデータセットの導入から始まり、多種多様なジェネリックオブジェクトを含むビデオのコレクションと、それらの属性の詳細なテキスト記述が伴う。
そこで本研究では,視覚的外観を動作キューと効果的に統合するだけでなく,カルマンフィルタを改良した新しいトラッキング手法KAM-SORTを提案する。
KAM-SORTはGMOTシナリオで同じ一般的なカテゴリから高い視覚的類似性のオブジェクトを扱う際に特に有利である。
総合実験により、Grounded-GMOTは既存のOneShot-GMOTアプローチより優れていることを示した。
さらに,各種トラッカーの広範な比較では,GMOTにおけるKAM-SORTの有効性が強調され,この分野におけるその意義が確立された。
プロジェクトページ: https://UARK-AICV.github.io/G2MOT。
ソースコードとデータセットは一般公開される予定だ。
関連論文リスト
- ClickTrack: Towards Real-time Interactive Single Object Tracking [58.52366657445601]
リアルタイムシナリオにおけるクリックインタラクションを用いた新しいパラダイムであるClickTrackを提案する。
特定のシナリオにおける曖昧さに対処するために、ポイントとオプションのテキスト情報を入力として受け入れるガイド・クリック・リファイナ(GCR)を設計した。
LaSOTとGOT-10kベンチマークの実験により、GCRと組み合わせたトラッカーがリアルタイムの対話シナリオで安定したパフォーマンスを実現することが示された。
論文 参考訳(メタデータ) (2024-11-20T10:30:33Z) - STCMOT: Spatio-Temporal Cohesion Learning for UAV-Based Multiple Object Tracking [13.269416985959404]
無人航空機(UAV)ビデオにおける複数物体追跡(MOT)は、コンピュータビジョンにおける多様な用途において重要である。
時空間結合型多目的追跡フレームワーク(STCMOT)を提案する。
歴史的埋め込み機能を用いて,ReIDの表現と検出機能を逐次的にモデル化する。
我々のフレームワークはMOTAとIDF1メトリクスで新しい最先端のパフォーマンスを設定します。
論文 参考訳(メタデータ) (2024-09-17T14:34:18Z) - TP-GMOT: Tracking Generic Multiple Object by Textual Prompt with Motion-Appearance Cost (MAC) SORT [0.0]
マルチオブジェクト追跡(MOT)は、かなり進歩しているが、事前の知識に大きく依存している。
ジェネリック・マルチプル・オブジェクト・トラッキング(GMOT)は、類似した外観を持つ複数のオブジェクトを追跡するが、ターゲットに関する事前情報が少ない。
我々はtextbftextTP-GMOTと呼ばれる新しいテキストプロンプトベースのオープン語彙GMOTフレームワークを導入する。
GMOTタスク用のtextRefer-GMOTデータセット上で、コントリビューションをベンチマークします。
論文 参考訳(メタデータ) (2024-09-04T07:33:09Z) - Siamese-DETR for Generic Multi-Object Tracking [16.853363984562602]
従来のマルチオブジェクト追跡(MOT)は、事前に定義されたクローズドセットカテゴリに属するオブジェクトを追跡することに限定されている。
Siamese-DETRは、所定のテキストプロンプトとテンプレート画像を用いて、事前に定義されたカテゴリを超えてオブジェクトを追跡する。
Siamese-DETRはGMOT-40データセット上の既存のMOTメソッドを大きなマージンで上回る。
論文 参考訳(メタデータ) (2023-10-27T03:32:05Z) - Z-GMOT: Zero-shot Generic Multiple Object Tracking [8.878331472995498]
マルチオブジェクト追跡(MOT)は、事前知識や事前定義されたカテゴリに依存するような制限に直面している。
これらの問題に対処するため、ジェネリック・マルチプル・オブジェクト・トラッキング(GMOT)が代替アプローチとして登場した。
我々は,初期バウンディングボックスや事前定義されたカテゴリを必要とせずに,テキストに表示されるカテゴリからオブジェクトを追跡する,最先端追跡ソリューションである$mathttZ-GMOT$を提案する。
論文 参考訳(メタデータ) (2023-05-28T06:44:33Z) - OVTrack: Open-Vocabulary Multiple Object Tracking [64.73379741435255]
OVTrackは任意のオブジェクトクラスを追跡することができるオープン語彙トラッカーである。
大規模な大語彙のTAOベンチマークに新たな最先端技術が設定されている。
論文 参考訳(メタデータ) (2023-04-17T16:20:05Z) - OmniTracker: Unifying Object Tracking by Tracking-with-Detection [119.51012668709502]
OmniTrackerは、完全に共有されたネットワークアーキテクチャ、モデルウェイト、推論パイプラインですべてのトラッキングタスクを解決するために提供されている。
LaSOT、TrackingNet、DAVIS16-17、MOT17、MOTS20、YTVIS19を含む7つの追跡データセットの実験は、OmniTrackerがタスク固有の追跡モデルと統合された追跡モデルの両方よりも、オンパーまたはそれ以上の結果を達成することを示した。
論文 参考訳(メタデータ) (2023-03-21T17:59:57Z) - Beyond SOT: Tracking Multiple Generic Objects at Once [141.36900362724975]
ジェネリックオブジェクト追跡(ジェネリックオブジェクト追跡、英: Generic Object Tracking、GOT)は、ビデオの最初のフレームでボックスをバウンディングすることによって指定されたターゲットオブジェクトを追跡する問題である。
大規模GOTベンチマークであるLaGOTを導入し,複数のアノテート対象オブジェクトをシーケンス毎に含む。
提案手法は単一オブジェクトのGOTデータセットに対して高い競合性を実現し,TrackingNet上での新たな技術状態が84.4%の成功率で設定されている。
論文 参考訳(メタデータ) (2022-12-22T17:59:19Z) - End-to-end Tracking with a Multi-query Transformer [96.13468602635082]
マルチオブジェクトトラッキング(MOT)は、時間とともにシーン内のオブジェクトの位置、外観、アイデンティティを同時に推論する必要がある課題である。
本研究の目的は、トラッキング・バイ・ディテクト・アプローチを超えて、未知のオブジェクト・クラスに対してもよく機能するクラスに依存しないトラッキングへと移行することである。
論文 参考訳(メタデータ) (2022-10-26T10:19:37Z) - TAO: A Large-Scale Benchmark for Tracking Any Object [95.87310116010185]
オブジェクトのデータセットの追跡は2,907本の高解像度ビデオで構成され、平均で30分の長さの多様な環境でキャプチャされる。
ビデオの任意の時点で移動するオブジェクトにアノテータにラベルを付け、ファクトラムの後に名前を付けるように求めます。
我々の語彙は、既存の追跡データセットと著しく大きく、質的に異なる。
論文 参考訳(メタデータ) (2020-05-20T21:07:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。