論文の概要: MOZART: Ensembling Approach for COVID-19 Detection using Chest X-Ray Imagery
- arxiv url: http://arxiv.org/abs/2410.09255v1
- Date: Fri, 11 Oct 2024 21:02:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 15:23:18.198036
- Title: MOZART: Ensembling Approach for COVID-19 Detection using Chest X-Ray Imagery
- Title(参考訳): MOZART:胸部X線画像を用いた新型コロナウイルス検出へのアプローチ
- Authors: Mohammed Shabo, Nazar Siddig,
- Abstract要約: 新型コロナウイルス(COVID-19)が世界的なパンデミックを引き起こし、医療システムに悪影響を及ぼした。
従来の畳み込みニューラルネットワーク(CNN)は印象的な精度を実現している。
ウイルス検出を強化するアンサンブル学習手法であるMOZARTフレームワークを導入する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: COVID-19, has led to a global pandemic that strained the healthcare systems. Early and accurate detection is crucial for controlling the spread of the virus. While reverse transcription polymerase chain reaction test is the gold standard for diagnosis, it's limited availability, long processing times and extremely high false negative rate, have prompted the exploration of alternative methods. Chest Xray imaging has emerged as a valuable, non invasive tool for identifying COVID-19 related lung abnormalities. Traditional convolutional neural networks (CNNs) achieve impressive accuracy, but there is a need for more robust solutions to minimize false positives and negatives in critical medical applications. Thus We introduce the MOZART framework, an ensemble learning approach that enhances the virus detection. We trained three CNN architectures InceptionV3, Xception, and ResNet50 on a balanced chest X-ray dataset of 3,616 COVID-19 and 3,616 healthy images. Each model underwent a separate preprocessing pipeline, such as normalizing inputs to a range of -1 to 1. The dataset was split into 70% for training, 20% for validation, and 10% for testing, after training the individual models, we trained a shallow neural network on the predictions and to provide a us with the final predictions. Our results show that the MOZART framework with it's sub-experiments MOZART1 and MOZART2 outperforms individual CNN models in key metrics. It achieved an accuracy of 99.17% and an F1 score of 99.16%. MOZART1 excels at minimizing false positives, while MOZART2 is better for reducing false negatives. This work suggests that the MOZART framework can improve reliability in AI-driven medical imaging tasks and should be explored further for other lung diseases.
- Abstract(参考訳): 新型コロナウイルス(COVID-19)が世界的なパンデミックを引き起こし、医療システムに悪影響を及ぼした。
ウイルスの拡散を制御するためには、早期かつ正確な検出が不可欠である。
逆転写ポリメラーゼ連鎖反応試験は診断のための金の標準であるが、可用性、長い処理時間、非常に高い偽陰性率に制限されているため、代替手法の探索が進められている。
胸部X線画像は、新型コロナウイルス関連肺の異常を識別する貴重な非侵襲的ツールとして登場した。
従来の畳み込みニューラルネットワーク(CNN)は、目覚ましい精度を達成するが、重要な医療応用において、偽陽性と否定を最小化するためのより堅牢なソリューションが必要である。
そこで本研究では,ウイルス検出を強化するアンサンブル学習手法であるMOZARTフレームワークを紹介する。
InceptionV3, Xception, ResNet50の3つのCNNアーキテクチャを,3,616 COVID-19と3,616 の健康画像のバランスのとれた胸部X線データセットでトレーニングした。
各モデルは、入力を-1から1の範囲に正規化するなど、別々の前処理パイプラインを実行した。
データセットはトレーニングの70%、検証の20%、テストの10%に分割され、個々のモデルをトレーニングした後、予測に関する浅いニューラルネットワークをトレーニングし、最終的な予測を提供しました。
この結果から,MOZART1 と MOZART2 を併用した MOZART フレームワークは,個々の CNN モデルよりも重要な指標として優れていることがわかった。
精度は99.17%、F1スコアは99.16%に達した。
MOZART1は偽陽性の最小化に優れ、MOZART2は偽陰性を減らすのに優れている。
この研究は、MOZARTフレームワークがAI駆動型医療画像タスクの信頼性を向上させることを示唆し、他の肺疾患に対してもさらなる研究が必要であることを示唆している。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - A Novel Implementation of Machine Learning for the Efficient,
Explainable Diagnosis of COVID-19 from Chest CT [0.0]
本研究の目的は、胸部CTスキャンから新型コロナウイルスを機械学習で検出することである。
提案したモデルは0.927の総合精度と0.958の感度を得た。
論文 参考訳(メタデータ) (2022-06-15T18:35:22Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
携帯電話カメラで中国とスペインで撮影された視線領域の画像を用いて、新型コロナウイルスの早期スクリーニングモデルを開発し、テストした。
AUC, 感度, 特異性, 精度, F1。
論文 参考訳(メタデータ) (2021-09-18T02:28:01Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z) - Automated Chest CT Image Segmentation of COVID-19 Lung Infection based
on 3D U-Net [0.0]
新型コロナウイルス(COVID-19)は世界中の何十億もの生命に影響を与え、公衆医療に大きな影響を与えている。
新型コロナウイルス感染地域のための革新的な自動セグメンテーションパイプラインを提案する。
本手法は,複数の前処理手法を実行することにより,一意およびランダムな画像パッチをオンザフライで生成する訓練に焦点をあてる。
論文 参考訳(メタデータ) (2020-06-24T17:29:26Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
前頭部胸部X線画像の重症度予測モデルを提案する。
このようなツールは、エスカレーションやケアの非エスカレーションに使用できる新型コロナウイルスの肺感染症の重症度を測定することができる。
論文 参考訳(メタデータ) (2020-05-24T23:13:16Z) - Towards an Effective and Efficient Deep Learning Model for COVID-19
Patterns Detection in X-ray Images [2.21653002719733]
本研究の主な目的は、胸部X線検査における新型コロナウイルススクリーニングの問題に対して、正確かつ効率的な方法を提案することである。
13,569枚のX線画像のデータセットを、健康な非新型コロナウイルス患者と新型コロナウイルス患者に分けて、提案したアプローチを訓練する。
結果: 提案手法により, 全体の精度93.9%, COVID-19, 感度96.8%, 正の予測100%の高品質モデルが得られた。
論文 参考訳(メタデータ) (2020-04-12T23:26:56Z) - COVID-ResNet: A Deep Learning Framework for Screening of COVID19 from
Radiographs [1.9798034349981157]
新型コロナウイルスと他の肺炎を鑑別するための正確な畳み込みニューラルネットワークフレームワークを提案する。
本研究は,モデル性能を向上させるために,トレーニング済みのResNet-50アーキテクチャを微調整する3段階の手法を提案する。
このモデルは、新型コロナウイルスの早期スクリーニングに役立ち、医療システムの負担軽減に役立つ。
論文 参考訳(メタデータ) (2020-03-31T17:42:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。