論文の概要: Towards Multi-Modal Animal Pose Estimation: An In-Depth Analysis
- arxiv url: http://arxiv.org/abs/2410.09312v1
- Date: Sat, 12 Oct 2024 00:37:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 15:13:33.227114
- Title: Towards Multi-Modal Animal Pose Estimation: An In-Depth Analysis
- Title(参考訳): マルチモーダル動物ポンド推定に向けて--インディース分析
- Authors: Qianyi Deng, Oishi Deb, Amir Patel, Christian Rupprecht, Philip Torr, Niki Trigoni, Andrew Markham,
- Abstract要約: 動物ポーズ推定(英: Animal pose Estimation、APE)は、様々なセンサーとモダリティ入力を用いて、動物の身体の部位を特定することを目的としている。
2013年以降、178の論文を評価することで、APEの手法は、センサーとモダリティのタイプ、学習パラダイム、実験的な設定、アプリケーションドメインによって分類される。
- 参考スコア(独自算出の注目度): 48.57353513938747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Animal pose estimation (APE) aims to locate the animal body parts using a diverse array of sensor and modality inputs, which is crucial for research across neuroscience, biomechanics, and veterinary medicine. By evaluating 178 papers since 2013, APE methods are categorised by sensor and modality types, learning paradigms, experimental setup, and application domains, presenting detailed analyses of current trends, challenges, and future directions in single- and multi-modality APE systems. The analysis also highlights the transition between human and animal pose estimation. Additionally, 2D and 3D APE datasets and evaluation metrics based on different sensors and modalities are provided. A regularly updated project page is provided here: https://github.com/ChennyDeng/MM-APE.
- Abstract(参考訳): 動物ポーズ推定(英: Animal pose Estimation、APE)は、神経科学、バイオメカニクス、獣医学の研究に欠かせない様々なセンサーとモダリティの入力を用いて、動物の身体の部位を特定することを目的としている。
2013年以降の178の論文を評価することで、APEの手法は、センサとモダリティのタイプ、学習パラダイム、実験的なセットアップ、アプリケーションドメインによって分類され、単一および多モードのAPEシステムにおける現在のトレンド、課題、今後の方向性に関する詳細な分析を提示する。
この分析はまた、人間と動物のポーズ推定の遷移を強調している。
さらに、異なるセンサとモダリティに基づく2Dおよび3D APEデータセットと評価指標も提供される。
定期的に更新されたプロジェクトページは以下の通りである。
関連論文リスト
- A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
本研究の目的は,認知診断の現在のモデルについて,機械学習を用いた新たな展開に注目した調査を行うことである。
モデル構造,パラメータ推定アルゴリズム,モデル評価方法,適用例を比較して,認知診断モデルの最近の傾向を概観する。
論文 参考訳(メタデータ) (2024-07-07T18:02:00Z) - Of Mice and Pose: 2D Mouse Pose Estimation from Unlabelled Data and
Synthetic Prior [0.7499722271664145]
そこで本稿では, 合成合成経験的ポーズを用いた2次元マウスのポーズ推定手法を提案する。
本手法はマウスの四肢構造に適応し,合成3次元マウスモデルから2次元ポーズの経験的先行を生成できる。
新しいマウスビデオデータセットの実験では,ポーズ予測を手作業で得られた真実と比較することにより,提案手法の性能を評価する。
論文 参考訳(メタデータ) (2023-07-25T09:31:55Z) - Transformers in Healthcare: A Survey [11.189892739475633]
Transformerは、当初、汎用自然言語処理(NLP)タスクを解決するために開発されたディープラーニングアーキテクチャの一種である。
本稿では, 医療画像, 構造化・非構造化電子健康記録(EHR), ソーシャルメディア, 生理信号, 生体分子配列など, 様々な形態のデータを解析するために, このアーキテクチャがどのように採用されてきたのかを概説する。
医療におけるトランスフォーマーの利用のメリットと限界について議論し、計算コスト、モデル解釈可能性、公正性、人的価値との整合性、倫理的含意、環境影響などの問題を検討する。
論文 参考訳(メタデータ) (2023-06-30T18:14:20Z) - Domain Adaptation for Inertial Measurement Unit-based Human Activity
Recognition: A Survey [1.7205106391379026]
機械学習に基づくウェアラブルヒューマンアクティビティ認識(WHAR)モデルは、スマートでコネクテッドなコミュニティアプリケーションの開発を可能にする。
これらのWHARモデルの普及は、データ分散の不均一性の存在下での性能低下によって妨げられている。
従来の機械学習アルゴリズムとトランスファーラーニング技術は、そのようなデータ不均一性を扱うことの基盤となる課題に対処するために提案されている。
ドメイン適応(Domain adapt)は、近年の文献において大きな人気を博した転帰学習技術の一つである。
論文 参考訳(メタデータ) (2023-04-07T01:33:42Z) - CNN-Based Action Recognition and Pose Estimation for Classifying Animal
Behavior from Videos: A Survey [0.0]
アクション認識(Action Recognition)は、1つ以上の被験者がトリミングされたビデオで行う活動の分類であり、多くの技術の基礎を形成する。
人間の行動認識のためのディープラーニングモデルは、過去10年間に進歩してきた。
近年,深層学習に基づく行動認識を取り入れた研究への関心が高まっている。
論文 参考訳(メタデータ) (2023-01-15T20:54:44Z) - Cetacean Translation Initiative: a roadmap to deciphering the
communication of sperm whales [97.41394631426678]
最近の研究では、非ヒト種における音響コミュニケーションを分析するための機械学習ツールの約束を示した。
マッコウクジラの大量生物音響データの収集と処理に必要な重要な要素について概説する。
開発された技術能力は、非人間コミュニケーションと動物行動研究を研究する幅広いコミュニティにおいて、クロス応用と進歩をもたらす可能性が高い。
論文 参考訳(メタデータ) (2021-04-17T18:39:22Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPODは、グラフの注目ネットワークに基づいて身体のダイナミクスを予測する新しい方法です。
実世界の課題を取り入れるために,各フレームで推定された身体関節が可視・視認可能かどうかを示す指標を学習する。
評価の結果,TRiPODは,各軌道に特化して設計され,予測タスクに特化している。
論文 参考訳(メタデータ) (2021-04-08T20:01:00Z) - 3D Human Body Reshaping with Anthropometric Modeling [59.51820187982793]
人間測定パラメータから正確で現実的な3D人体を再構築することは、個人識別、オンラインショッピング、仮想現実のための基本的な課題です。
このような3d形状を作る既存のアプローチは、レンジカメラやハイエンドスキャナーによる複雑な測定に苦しむことが多い。
本稿では,各ファセットに対する自動人為的パラメータモデリングを可能にする,特徴選択に基づく局所マッピング手法を提案する。
論文 参考訳(メタデータ) (2021-04-05T04:09:39Z) - Deep Learning-Based Human Pose Estimation: A Survey [66.01917727294163]
人間のポーズ推定は、過去10年間に注目を集めてきた。
ヒューマン・コンピュータ・インタラクション、モーション・アナリティクス、拡張現実、バーチャル・リアリティーなど幅広い用途で利用されている。
最近のディープラーニングベースのソリューションは、人間のポーズ推定において高いパフォーマンスを実現している。
論文 参考訳(メタデータ) (2020-12-24T18:49:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。