Keys to Robust Edits: from Theoretical Insights to Practical Advances
- URL: http://arxiv.org/abs/2410.09338v1
- Date: Sat, 12 Oct 2024 02:54:12 GMT
- Title: Keys to Robust Edits: from Theoretical Insights to Practical Advances
- Authors: Jianhao Yan, Futing Wang, Yun Luo, Yafu Li, Yue Zhang,
- Abstract summary: Large language models (LLMs) have revolutionized knowledge storage and retrieval, but face challenges with conflicting and outdated information.
This work investigates the cause of failures in locate-and-edit methods, offering theoretical insights into their key-value modeling.
Empirical analysis reveals that keys used by current methods fail to meet robustness and specificity requirements.
- Score: 20.10464264597003
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have revolutionized knowledge storage and retrieval, but face challenges with conflicting and outdated information. Knowledge editing techniques have been proposed to address these issues, yet they struggle with robustness tests involving long contexts, paraphrased subjects, and continuous edits. This work investigates the cause of these failures in locate-and-edit methods, offering theoretical insights into their key-value modeling and deriving mathematical bounds for robust and specific edits, leading to a novel 'group discussion' conceptual model for locate-and-edit methods. Empirical analysis reveals that keys used by current methods fail to meet robustness and specificity requirements. To address this, we propose a Robust Edit Pathway (REP) that disentangles editing keys from LLMs' inner representations. Evaluations on LLaMA2-7B and Mistral-7B using the CounterFact dataset show that REP significantly improves robustness across various metrics, both in-domain and out-of-domain, with minimal trade-offs in success rate and locality. Our findings advance the development of reliable and flexible knowledge updating in LLMs.
Related papers
- Uncovering Overfitting in Large Language Model Editing [35.55260822503773]
We identify and investigate the phenomenon of Editing Overfit, where edited models assign disproportionately high probabilities to the edit target.
We propose a new plug-and-play strategy called Learn to Inference (LTI), which introduce a Multi-stage Inference Constraint module to guide the edited models in recalling new knowledge.
arXiv Detail & Related papers (2024-10-10T11:09:00Z) - Editing the Mind of Giants: An In-Depth Exploration of Pitfalls of Knowledge Editing in Large Language Models [26.516571783335824]
Recent studies have identified side effects, such as knowledge distortion and the deterioration of general abilities, that have emerged after editing.
This survey presents a comprehensive study of these side effects, providing a unified perspective on the challenges of knowledge editing in large language models.
arXiv Detail & Related papers (2024-06-03T15:28:21Z) - Robust and Scalable Model Editing for Large Language Models [75.95623066605259]
We propose EREN (Edit models by REading Notes) to improve the scalability and robustness of LLM editing.
Unlike existing techniques, it can integrate knowledge from multiple edits, and correctly respond to syntactically similar but semantically unrelated inputs.
arXiv Detail & Related papers (2024-03-26T06:57:23Z) - Editing Conceptual Knowledge for Large Language Models [65.38231526537476]
This paper pioneers the investigation of editing conceptual knowledge for Large Language Models (LLMs)
We construct a novel benchmark dataset ConceptEdit and establish a suite of new metrics for evaluation.
experimental results reveal that, although existing editing methods can efficiently modify concept-level definition to some extent, they also have the potential to distort the related instantial knowledge.
arXiv Detail & Related papers (2024-03-10T16:57:10Z) - The Butterfly Effect of Model Editing: Few Edits Can Trigger Large Language Models Collapse [58.0132400208411]
Even a single edit can trigger model collapse, manifesting as significant performance degradation in various benchmark tasks.
benchmarking Large Language Models after each edit is impractically time-consuming and resource-intensive.
We have utilized GPT-3.5 to develop a new dataset, HardEdit, based on hard cases.
arXiv Detail & Related papers (2024-02-15T01:50:38Z) - Propagation and Pitfalls: Reasoning-based Assessment of Knowledge
Editing through Counterfactual Tasks [36.292901021210575]
We introduce a novel reasoning-based benchmark -- ReCoE (Reasoning-based Counterfactual Editing dataset)
We conduct a thorough analysis of existing knowledge editing techniques, including input augmentation, finetuning, and locate-and-edit.
All model editing methods show notably low performance on this dataset, especially in certain reasoning schemes.
arXiv Detail & Related papers (2024-01-31T04:12:59Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
Large Language Models (LLMs) have shown extraordinary capabilities in understanding and generating text that closely mirrors human communication.
This paper defines the knowledge editing problem and provides a comprehensive review of cutting-edge approaches.
We introduce a new benchmark, KnowEdit, for a comprehensive empirical evaluation of representative knowledge editing approaches.
arXiv Detail & Related papers (2024-01-02T16:54:58Z) - Editing Large Language Models: Problems, Methods, and Opportunities [51.903537096207]
This paper embarks on a deep exploration of the problems, methods, and opportunities related to model editing for LLMs.
We provide an exhaustive overview of the task definition and challenges associated with model editing, along with an in-depth empirical analysis of the most progressive methods currently at our disposal.
Our objective is to provide valuable insights into the effectiveness and feasibility of each editing technique, thereby assisting the community in making informed decisions on the selection of the most appropriate method for a specific task or context.
arXiv Detail & Related papers (2023-05-22T16:00:00Z) - RCOT: Detecting and Rectifying Factual Inconsistency in Reasoning by
Reversing Chain-of-Thought [56.558892336235914]
Reversing Chain-of-Thought (RCoT) is a novel method to improve large language models' reasoning abilities.
RCoT automatically detects and rectifys factual inconsistency in generated solutions.
We show that manually written fine-grained feedback can dramatically improve LLMs' reasoning abilities.
arXiv Detail & Related papers (2023-05-19T08:02:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.