論文の概要: Keys to Robust Edits: from Theoretical Insights to Practical Advances
- arxiv url: http://arxiv.org/abs/2410.09338v2
- Date: Thu, 22 May 2025 02:11:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:47.668332
- Title: Keys to Robust Edits: from Theoretical Insights to Practical Advances
- Title(参考訳): ロバスト編集の鍵:理論的視点から実践的進歩へ
- Authors: Jianhao Yan, Futing Wang, Yun Luo, Yafu Li, Yue Zhang,
- Abstract要約: 大規模言語モデル(LLM)は、矛盾/時代遅れのパラメトリック記憶のために正確な知識を維持するのに苦労する。
当社のソリューションでは,ネイティブモデル表現から編集キーをアンタングルするプラグイン・アンド・プレイモジュールである textitRobust Edit Pathway (REP) を導入しています。
- 参考スコア(独自算出の注目度): 20.10464264597003
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) struggle with maintaining accurate knowledge due to conflicting/outdated parametric memories. While locate-and-edit methods address this, their reliance on models' internal representations leads to robustness failures in long-context reasoning and paraphrased queries. We identify a fundamental limitation of locate-and-edit methods: existing semantic keys (for memory localization) cannot simultaneously satisfy robustness (context-invariant activation) and specificity (precise knowledge discrimination). Through theoretical error-bound analysis, we establish formal criteria for effective editing. Our solution introduces \textit{Robust Edit Pathway (REP)}, a plug-and-play module that: (1) disentangles editing keys from native model representations; (2) dynamically adjusts keys via contrastive learning to achieve robustness-specificity balance. Extensive experiments across various editing methods (ROME/MEMIT/R-ROME/EMMET), existing LLMs (LLaMA2, QWen, Mistral), and datasets (CounterFact, ZsRE) show that REP improves success rate over robustness tests by up-to 66.4\% while maintaining the success rate unaffected. Our code can be found at https://github.com/ElliottYan/RobustKeyEdit .
- Abstract(参考訳): 大規模言語モデル(LLM)は、矛盾/時代遅れのパラメトリック記憶のために正確な知識を維持するのに苦労する。
located-and-editメソッドはこの問題に対処するが、モデルの内部表現への依存は、長文推論やパラフレーズクエリの堅牢性障害につながる。
既存のセマンティックキー(メモリローカライゼーション)は、ロバスト性(コンテキスト不変のアクティベーション)と特異性(正確な知識識別)を同時に満足できない。
理論的エラーバウンド解析により、有効な編集のための公式な基準を確立する。
本ソリューションでは,(1)ネイティブモデル表現から編集キーを切り離す,(2) 対照的な学習を通じてキーを動的に調整し,頑健さと特異性を両立させる,というプラグイン・アンド・プレイ・モジュールである,reP(textit{Robust Edit Pathway)を導入している。
様々な編集方法(ROME/MEMIT/R-ROME/EMMET)、既存のLCM(LLaMA2, QWen, Mistral)、データセット(CounterFact, ZsRE)の広範な実験により、REPは成功率を影響を受けないまま66.4\%まで向上することが示された。
私たちのコードはhttps://github.com/ElliottYan/RobustKeyEdit で参照できます。
関連論文リスト
- $μ$KE: Matryoshka Unstructured Knowledge Editing of Large Language Models [8.472795721252856]
Matryoshka Unstructured Knowledge Editingは、メモリ更新と出力トークン間の依存関係を保存する。
$mu$KEは、最先端の方法よりも編集効率を最大12.33%向上させる。
論文 参考訳(メタデータ) (2025-04-01T21:24:44Z) - Knowledge Updating? No More Model Editing! Just Selective Contextual Reasoning [38.018263569983226]
信頼性,一般化,局所性,可搬性という4次元の10種類のモデル編集手法の評価を行った。
次に、知識更新のためのSCR(Selective Contextual Reasoning)という簡単な手法を提案する。
論文 参考訳(メタデータ) (2025-03-07T08:04:25Z) - The Mirage of Model Editing: Revisiting Evaluation in the Wild [70.17413507444704]
質問応答アプリケーションにおけるモデル編集の有効性について検討する。
単一の編集実験により、現在行われている編集手法は、以前報告したよりも大幅に悪化していることが示された。
本分析は,既存のモデル編集手法の現実的適用性と評価手法の両面について,基礎的な再検討を行うものである。
論文 参考訳(メタデータ) (2025-02-16T15:57:55Z) - Uncovering Overfitting in Large Language Model Editing [35.55260822503773]
編集対象に不均等に高い確率を割り当てる編集オーバーフィット現象を同定し,検討する。
本稿では,新たな知識を振り返って編集されたモデルをガイドするマルチステージ推論制約モジュールを導入する,Learning to Inference (LTI) と呼ばれる新しいプラグイン・アンド・プレイ戦略を提案する。
論文 参考訳(メタデータ) (2024-10-10T11:09:00Z) - Editing the Mind of Giants: An In-Depth Exploration of Pitfalls of Knowledge Editing in Large Language Models [26.516571783335824]
近年の研究では、知識の歪みや一般的な能力の劣化など、編集後に現れた副作用が特定されている。
本調査では,これらの側面を包括的に研究し,大規模言語モデルにおける知識編集の課題を統一的に考察する。
論文 参考訳(メタデータ) (2024-06-03T15:28:21Z) - Robust and Scalable Model Editing for Large Language Models [75.95623066605259]
LLM編集のスケーラビリティと堅牢性を向上させるため,EREN(Reading Notesによる編集モデル)を提案する。
既存の技術とは異なり、複数の編集から知識を統合することができ、構文的に類似しているが意味的に無関係な入力に正しく反応する。
論文 参考訳(メタデータ) (2024-03-26T06:57:23Z) - Editing Conceptual Knowledge for Large Language Models [65.38231526537476]
本稿では,Large Language Models(LLMs)における概念知識の編集の先駆者となる。
本研究では,新しいベンチマークデータセットConceptEditを構築し,評価のための新しいメトリクスセットを確立する。
実験の結果,既存の編集手法は概念レベルの定義をある程度効率的に修正できるが,関連する瞬間的知識を歪ませる可能性も示された。
論文 参考訳(メタデータ) (2024-03-10T16:57:10Z) - The Butterfly Effect of Model Editing: Few Edits Can Trigger Large Language Models Collapse [58.0132400208411]
単一の編集でさえモデル崩壊を引き起こし、様々なベンチマークタスクで大幅なパフォーマンス低下を示す。
編集後の大規模言語モデルのベンチマークは、過激な時間とリソース集約である。
我々は、GPT-3.5を用いて、ハードケースに基づいた新しいデータセット、HardEditを開発した。
論文 参考訳(メタデータ) (2024-02-15T01:50:38Z) - Propagation and Pitfalls: Reasoning-based Assessment of Knowledge
Editing through Counterfactual Tasks [36.292901021210575]
ReCoE(Reasoning-based Counterfactual Editing dataset)という新しい推論ベースのベンチマークを導入する。
我々は既存の知識編集技術を徹底的に分析し、入力強化、微調整、位置と編集を行う。
全てのモデル編集手法は、特に特定の推論スキームにおいて、このデータセットで顕著に低い性能を示す。
論文 参考訳(メタデータ) (2024-01-31T04:12:59Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
大規模言語モデル(LLM)は、人間のコミュニケーションを忠実に反映したテキストの理解と生成の素晴らしい能力を示している。
本稿では,知識編集の問題を定義し,最先端アプローチの包括的レビューを行う。
我々は,代表的知識編集アプローチの総合的評価のための新しいベンチマークであるKnowEditを紹介した。
論文 参考訳(メタデータ) (2024-01-02T16:54:58Z) - Editing Large Language Models: Problems, Methods, and Opportunities [51.903537096207]
本稿では, LLMのモデル編集に関わる問題, 方法, 機会を深く探究する。
本稿では,モデル編集に関わるタスク定義と課題の概観と,現在処理中の最も進歩的な手法の詳細な実証分析について述べる。
本研究の目的は,各編集手法の有効性と実現可能性に関する貴重な知見を提供することであり,特定のタスクやコンテキストに対して,最も適切な方法の選択に関する情報決定を行う上で,コミュニティを支援することである。
論文 参考訳(メタデータ) (2023-05-22T16:00:00Z) - RCOT: Detecting and Rectifying Factual Inconsistency in Reasoning by
Reversing Chain-of-Thought [56.558892336235914]
Reversing Chain-of-Thought (RCoT) は、大規模言語モデルの推論能力を改善する新しい手法である。
RCoTは生成したソリューションにおける事実の不整合を自動的に検出し、修正する。
手書きのきめ細かいフィードバックがLLMの推論能力を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-05-19T08:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。