論文の概要: Generative Subgraph Retrieval for Knowledge Graph-Grounded Dialog Generation
- arxiv url: http://arxiv.org/abs/2410.09350v1
- Date: Sat, 12 Oct 2024 03:33:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 14:53:51.678626
- Title: Generative Subgraph Retrieval for Knowledge Graph-Grounded Dialog Generation
- Title(参考訳): 知識グラフを用いた対話生成のための生成サブグラフ検索
- Authors: Jinyoung Park, Minseok Joo, Joo-Kyung Kim, Hyunwoo J. Kim,
- Abstract要約: ダイアログGSR(Generative Subgraph Retrieval)を用いたダイアログ生成を提案する。
DialogGSRは、言語モデル上にトークンシーケンスを直接生成することで、関連する知識サブグラフを取得する。
OpenDialKGとKOMODISデータセットで示されるように、知識グラフ基底ダイアログ生成における最先端のパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 17.437568540883106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graph-grounded dialog generation requires retrieving a dialog-relevant subgraph from the given knowledge base graph and integrating it with the dialog history. Previous works typically represent the graph using an external encoder, such as graph neural networks, and retrieve relevant triplets based on the similarity between single-vector representations of triplets and the dialog history. However, these external encoders fail to leverage the rich knowledge of pretrained language models, and the retrieval process is also suboptimal due to the information bottleneck caused by the single-vector abstraction of the dialog history. In this work, we propose Dialog generation with Generative Subgraph Retrieval (DialogGSR), which retrieves relevant knowledge subgraphs by directly generating their token sequences on top of language models. For effective generative subgraph retrieval, we introduce two key methods: (i) structure-aware knowledge graph linearization with self-supervised graph-specific tokens and (ii) graph-constrained decoding utilizing graph structural proximity-based entity informativeness scores for valid and relevant generative retrieval. DialogGSR achieves state-of-the-art performance in knowledge graph-grounded dialog generation, as demonstrated on OpenDialKG and KOMODIS datasets.
- Abstract(参考訳): 知識グラフ基底ダイアログ生成には、与えられた知識ベースグラフからダイアログ関連サブグラフを取得し、ダイアログ履歴と統合する必要がある。
従来の研究は、グラフニューラルネットワークのような外部エンコーダを使用してグラフを表現し、トリプレットの単一ベクトル表現とダイアログ履歴との類似性に基づいて関連するトリプレットを検索する。
しかし、これらの外部エンコーダは、事前訓練された言語モデルの豊富な知識を活用できず、ダイアログ履歴の単一ベクトル抽象化によって引き起こされる情報のボトルネックのため、検索プロセスも最適ではない。
本稿では,言語モデル上で直接トークンシーケンスを生成することにより,関連知識のサブグラフを検索するダイアログ生成手法を提案する。
効率的な生成サブグラフ検索には,2つの重要な方法を導入する。
(i)自己監督型グラフ固有トークンと構造認識型知識グラフ線形化
二 グラフ構造的近接性に基づく実体情報度スコアを用いたグラフ制約復号法により、妥当性及び関連性のある生成検索を行う。
DialogGSRは、OpenDialKGとKOMODISデータセットで示されるように、知識グラフ基底ダイアログ生成における最先端のパフォーマンスを実現する。
関連論文リスト
- Enhancing Dialogue Generation via Dynamic Graph Knowledge Aggregation [23.54754465832362]
従来のグラフニューラルネットワーク(GNN)では、グラフに渡すメッセージはテキストとは独立している。
このトレーニング体制は、グラフ知識とテキストの間に意味的なギャップをもたらす。
知識グラフ強化対話生成のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T13:21:00Z) - Knowledge Graph-Augmented Language Models for Knowledge-Grounded
Dialogue Generation [58.65698688443091]
我々は、知識グラフ(KGs)を用いた文脈関連および知識基底対話を生成するためのフレームワークであるSUbgraph Retrieval-augmented GEneration (SURGE)を提案する。
我々のフレームワークはまずKGから関連するサブグラフを取得し、その後、検索したサブグラフによって条件付けられた単語の埋め込みを摂動することで、事実間の一貫性を強制する。
我々は,OpendialKGとKOMODISデータセットのSURGEフレームワークを検証し,KGの知識を忠実に反映した高品質な対話を生成することを示す。
論文 参考訳(メタデータ) (2023-05-30T08:36:45Z) - Conversational Semantic Parsing using Dynamic Context Graphs [68.72121830563906]
汎用知識グラフ(KG)を用いた会話意味解析の課題を,数百万のエンティティと数千のリレーショナルタイプで検討する。
ユーザ発話を実行可能な論理形式にインタラクティブにマッピングできるモデルに焦点を当てる。
論文 参考訳(メタデータ) (2023-05-04T16:04:41Z) - Multi-grained Hypergraph Interest Modeling for Conversational
Recommendation [75.65483522949857]
複雑な履歴データの下でユーザの興味を捉えるために, マルチグラデーション・ハイパーグラフ・インフォメーション・モデリング手法を提案する。
提案手法では,まず,ユーザの過去の対話セッションをモデル化し,セッションベースハイパーグラフを作成するためにハイパーグラフ構造を用いる。
さらに,2種類のハイパーグラフに対して多粒度ハイパーグラフの畳み込みを行い,拡張表現を用いて関心を意識したCRSを開発する。
論文 参考訳(メタデータ) (2023-05-04T13:13:44Z) - Discovering Dialog Structure Graph for Open-Domain Dialog Generation [51.29286279366361]
chitchat corporaの対話構造を無監督で発見します。
次に、下流システムでのダイアログ生成を容易にするために利用します。
本稿では,グラフニューラルネットワーク(DVAE-GNN)を用いた離散変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2020-12-31T10:58:37Z) - GraphDialog: Integrating Graph Knowledge into End-to-End Task-Oriented
Dialogue Systems [9.560436630775762]
エンドツーエンドのタスク指向対話システムは,平易なテキスト入力から直接システム応答を生成することを目的としている。
1つは、外部知識ベース(KB)を学習フレームワークに効果的に組み込む方法であり、もう1つは、対話履歴のセマンティクスを正確に捉える方法である。
この2つの課題は、知識ベースと対話の依存性解析ツリーにおけるグラフ構造情報を活用することで解決される。
論文 参考訳(メタデータ) (2020-10-04T00:04:40Z) - Dialogue Relation Extraction with Document-level Heterogeneous Graph
Attention Networks [21.409522845011907]
対話関係抽出(DRE)は,多人数対話で言及される2つのエンティティ間の関係を検出することを目的としている。
本稿では,グラフが有意に接続された話者,エンティティ,エンティティタイプ,発話ノードを含むDREのためのグラフ注意ネットワーク方式を提案する。
このグラフに基づくアプローチは,対話における異なるエンティティペア間の関係を効果的に捉え,最先端のアプローチよりも優れていることを実証的に示す。
論文 参考訳(メタデータ) (2020-09-10T18:51:48Z) - Interactive Text Graph Mining with a Prolog-based Dialog Engine [8.663755202726795]
テキスト文書から抽出したランキングファクトデータベースを対話的に探索するPrologベースのダイアログエンジンを設計する。
我々は、依存リンクとWordNetが主観動詞オブジェクト、is-a、part-of関係という形でもたらす暗黙のセマンティック情報を利用する。
論文 参考訳(メタデータ) (2020-07-31T03:29:49Z) - ORD: Object Relationship Discovery for Visual Dialogue Generation [60.471670447176656]
視覚対話生成のためのオブジェクトインタラクションを保存するためのオブジェクト関係探索(ORD)フレームワークを提案する。
階層的なグラフ畳み込みネットワーク (HierGCN) が提案され、オブジェクトノードと近傍の関係を局所的に保持し、オブジェクトとオブジェクトの接続をグローバルに洗練する。
実験により,視覚的関係の文脈情報を活用することにより,対話の質を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2020-06-15T12:25:40Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z) - Knowledge-graph based Proactive Dialogue Generation with Improved
Meta-Learning [0.0]
本稿では,知識グラフに基づく3つのコンポーネントを用いたプロアクティブ対話生成モデル(KgDg)を提案する。
知識三重項の埋め込みと選択については、文の埋め込みの問題として定式化し、意味情報をよりよく捉える。
改良されたMAMLアルゴリズムは,限られた知識グラフから一般的な特徴を学習することができる。
論文 参考訳(メタデータ) (2020-04-19T08:41:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。