論文の概要: Quantum Neural Network for Accelerated Magnetic Resonance Imaging
- arxiv url: http://arxiv.org/abs/2410.09406v1
- Date: Sat, 12 Oct 2024 07:26:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 14:34:09.539174
- Title: Quantum Neural Network for Accelerated Magnetic Resonance Imaging
- Title(参考訳): 加速磁気共鳴イメージングのための量子ニューラルネットワーク
- Authors: Shuo Zhou, Yihang Zhou, Congcong Liu, Yanjie Zhu, Hairong Zheng, Dong Liang, Haifeng Wang,
- Abstract要約: 本稿では、高速磁気共鳴イメージングのための量子および古典的ネットワークを含むハイブリッドニューラルネットワークを提案する。
実験結果から, ハイブリット・ネットワークは優れた再構成結果を得たことが示唆され, 高速磁気共鳴イメージングの画像再構成におけるハイブリッド量子古典ニューラルネットワークの適用可能性が確認された。
- 参考スコア(独自算出の注目度): 20.014015582919182
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic resonance image reconstruction starting from undersampled k-space data requires the recovery of many potential nonlinear features, which is very difficult for algorithms to recover these features. In recent years, the development of quantum computing has discovered that quantum convolution can improve network accuracy, possibly due to potential quantum advantages. This article proposes a hybrid neural network containing quantum and classical networks for fast magnetic resonance imaging, and conducts experiments on a quantum computer simulation system. The experimental results indicate that the hybrid network has achieved excellent reconstruction results, and also confirm the feasibility of applying hybrid quantum-classical neural networks into the image reconstruction of rapid magnetic resonance imaging.
- Abstract(参考訳): アンサンプされたk空間データから始まる磁気共鳴画像再構成は、多くの潜在的な非線形特徴の回復を必要とするが、アルゴリズムがこれらの特徴を復元するのは非常に困難である。
近年、量子コンピューティングの発展により、量子畳み込みによってネットワークの精度が向上することが判明している。
本稿では、高速磁気共鳴イメージングのための量子および古典的ネットワークを含むハイブリッドニューラルネットワークを提案し、量子コンピュータシミュレーションシステムで実験を行う。
実験結果から, ハイブリット・ネットワークは優れた再構成結果を得たことが示唆され, 高速磁気共鳴イメージングの画像再構成におけるハイブリッド量子古典ニューラルネットワークの適用可能性が確認された。
関連論文リスト
- Universal Quantum Tomography With Deep Neural Networks [0.0]
純量子状態トモグラフィーと混合量子状態トモグラフィーの両方に対する2つのニューラルネットワークに基づくアプローチを提案する。
提案手法は,実験データから混合量子状態の再構成を行なえることを示す。
論文 参考訳(メタデータ) (2024-07-01T19:09:18Z) - Enhancing the expressivity of quantum neural networks with residual
connections [0.0]
量子残差ニューラルネットワーク(QResNets)を実装する量子回路に基づくアルゴリズムを提案する。
我々の研究は、古典的残留ニューラルネットワークの完全な量子的実装の基礎を築いた。
論文 参考訳(メタデータ) (2024-01-29T04:00:51Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
グレー値画像のひび割れ検出に量子転送学習を適用した。
我々は、PennyLaneの標準量子ビットのパフォーマンスとトレーニング時間を、IBMのqasm_simulatorや実際のバックエンドと比較する。
論文 参考訳(メタデータ) (2023-07-31T14:45:29Z) - Learning Quantum Processes with Memory -- Quantum Recurrent Neural
Networks [0.0]
本稿では,散逸性量子ニューラルネットワークに基づく完全量子リカレントニューラルネットワークを提案する。
これらのアルゴリズムが複雑な量子過程をメモリで学習する可能性を実証する。
数値シミュレーションにより、我々の量子リカレントニューラルネットワークは、小さなトレーニングセットから一般化する顕著な能力を示すことが示された。
論文 参考訳(メタデータ) (2023-01-19T16:58:39Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
我々は、QUantum Network Communication (SeQUeNCe) のオープンソースシミュレータを用いて、2つの原子周波数コム(AFC)吸収量子メモリ間の絡み合いの発生をシミュレートする。
本研究は,SeQUeNCe における truncated Fock 空間内の光量子状態の表現を実現する。
本研究では,SPDC音源の平均光子数と,平均光子数とメモリモード数の両方で異なる絡み合い発生率を観測する。
論文 参考訳(メタデータ) (2022-12-17T05:51:17Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - QDCNN: Quantum Dilated Convolutional Neural Network [1.52292571922932]
量子拡張畳み込みニューラルネットワーク(QDCNN)と呼ばれる新しいハイブリッド量子古典型アルゴリズムを提案する。
提案手法は,現代のディープラーニングアルゴリズムに広く応用されている拡張畳み込みの概念を,ハイブリッドニューラルネットワークの文脈にまで拡張する。
提案したQDCNNは,量子畳み込み過程において,計算コストを低減しつつ,より大きなコンテキストを捉えることができる。
論文 参考訳(メタデータ) (2021-10-29T10:24:34Z) - A Quantum Convolutional Neural Network for Image Classification [7.745213180689952]
量子畳み込みニューラルネットワーク(QCNN)という新しいニューラルネットワークモデルを提案する。
QCNNは実装可能な量子回路に基づいており、古典的畳み込みニューラルネットワークと同様の構造を持つ。
MNISTデータセットの数値シミュレーションにより,本モデルの有効性が示された。
論文 参考訳(メタデータ) (2021-07-08T06:47:34Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Quantum Deformed Neural Networks [83.71196337378022]
我々は,量子コンピュータ上で効率的に動作するように設計された新しい量子ニューラルネットワーク層を開発した。
入力状態の絡み合いに制限された場合、古典的なコンピュータでシミュレートすることができる。
論文 参考訳(メタデータ) (2020-10-21T09:46:12Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。