論文の概要: A Distributed Hybrid Quantum Convolutional Neural Network for Medical Image Classification
- arxiv url: http://arxiv.org/abs/2501.06225v1
- Date: Tue, 07 Jan 2025 11:58:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 17:24:52.810740
- Title: A Distributed Hybrid Quantum Convolutional Neural Network for Medical Image Classification
- Title(参考訳): 医用画像分類のための分散ハイブリッド量子畳み込みニューラルネットワーク
- Authors: Yangyang Li, Zhengya Qia, Yuelin Lia, Haorui Yanga, Ronghua Shanga, Licheng Jiaoa,
- Abstract要約: 本稿では,量子回路分割に基づく分散ハイブリッド量子畳み込みニューラルネットワークを提案する。
量子回路分割に基づく分散技術を統合することにより、8量子ビットQCNNは5量子ビットのみを用いて再構成できる。
本モデルは,2次・複数分類タスクの3つのデータセットにまたがる高い性能を実現する。
- 参考スコア(独自算出の注目度): 1.458255172453241
- License:
- Abstract: Medical images are characterized by intricate and complex features, requiring interpretation by physicians with medical knowledge and experience. Classical neural networks can reduce the workload of physicians, but can only handle these complex features to a limited extent. Theoretically, quantum computing can explore a broader parameter space with fewer parameters, but it is currently limited by the constraints of quantum hardware.Considering these factors, we propose a distributed hybrid quantum convolutional neural network based on quantum circuit splitting. This model leverages the advantages of quantum computing to effectively capture the complex features of medical images, enabling efficient classification even in resource-constrained environments. Our model employs a quantum convolutional neural network (QCNN) to extract high-dimensional features from medical images, thereby enhancing the model's expressive capability.By integrating distributed techniques based on quantum circuit splitting, the 8-qubit QCNN can be reconstructed using only 5 qubits.Experimental results demonstrate that our model achieves strong performance across 3 datasets for both binary and multiclass classification tasks. Furthermore, compared to recent technologies, our model achieves superior performance with fewer parameters, and experimental results validate the effectiveness of our model.
- Abstract(参考訳): 医用画像は複雑で複雑な特徴を特徴とし、医用知識と経験を持つ医師による解釈を必要とする。
古典的なニューラルネットワークは、医師の作業量を削減できるが、これらの複雑な特徴を限られた範囲でしか扱えない。
理論的には、量子コンピューティングはパラメータが少ないより広いパラメータ空間を探索できるが、現在は量子ハードウェアの制約によって制限されている。
このモデルは、量子コンピューティングの利点を利用して医療画像の複雑な特徴を効果的に捉え、資源に制約のある環境でも効率的に分類できる。
我々のモデルでは、量子畳み込みニューラルネットワーク(QCNN)を用いて、医用画像から高次元の特徴を抽出し、モデルの表現能力を向上させる。量子回路分割に基づく分散技術を統合することにより、8量子QCNNは5量子ビットのみを用いて再構成できる。
さらに,最近の技術と比較して,本モデルはパラメータが少なく,優れた性能を達成し,実験結果により本モデルの有効性が検証された。
関連論文リスト
- Quantum Latent Diffusion Models [65.16624577812436]
本稿では,古典的潜伏拡散モデルの確立した考え方を活用する量子拡散モデルの潜在的バージョンを提案する。
これには、従来のオートエンコーダを使用してイメージを削減し、次に潜時空間の変動回路で操作する。
この結果は、量子バージョンが生成した画像のより良い測定値を得ることによって証明されたように、量子バージョンを使用することの利点を示している。
論文 参考訳(メタデータ) (2025-01-19T21:24:02Z) - Training-efficient density quantum machine learning [2.918930150557355]
量子機械学習は強力でフレキシブルで効率的にトレーニング可能なモデルを必要とする。
トレーニング可能なユニタリの集合にランダム化を組み込んだ学習モデルである密度量子ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2024-05-30T16:40:28Z) - Digital-analog quantum convolutional neural networks for image classification [3.7691369315275693]
我々は、中性原子量子プロセッサにおけるネイティブIsing相互作用から生じる多部結合アナログブロックについて考察する。
ハードウェアの制約に応じて量子ビット接続を可変させることにより、複数の量子カーネルを適用する。
非トレーニング可能な量子カーネルと標準的な畳み込みニューラルネットワークを組み合わせたアーキテクチャは、現実的な医療画像の分類に使用される。
論文 参考訳(メタデータ) (2024-05-01T14:43:20Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
本稿では,量子ハイブリッド拡散モデルの設計手法を提案する。
量子コンピューティングの優れた一般化と古典的ネットワークのモジュラリティを組み合わせた2つのハイブリダイゼーション手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T16:57:51Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Quantum machine learning for image classification [39.58317527488534]
本研究では、量子力学の原理を有効計算に活用する2つの量子機械学習モデルを紹介する。
我々の最初のモデルは、並列量子回路を持つハイブリッド量子ニューラルネットワークであり、ノイズの多い中間スケール量子時代においても計算の実行を可能にする。
第2のモデルは、クオン進化層を持つハイブリッド量子ニューラルネットワークを導入し、畳み込みプロセスによる画像の解像度を低下させる。
論文 参考訳(メタデータ) (2023-04-18T18:23:20Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Multiclass classification using quantum convolutional neural networks
with hybrid quantum-classical learning [0.5999777817331318]
本稿では,量子畳み込みニューラルネットワークに基づく量子機械学習手法を提案する。
提案手法を用いて,MNISTデータセットの4クラス分類を,データエンコーディングの8つのキュービットと4つのアクニラキュービットを用いて実証する。
この結果から,学習可能なパラメータの数に匹敵する古典的畳み込みニューラルネットワークによる解の精度が示された。
論文 参考訳(メタデータ) (2022-03-29T09:07:18Z) - A Quantum Convolutional Neural Network for Image Classification [7.745213180689952]
量子畳み込みニューラルネットワーク(QCNN)という新しいニューラルネットワークモデルを提案する。
QCNNは実装可能な量子回路に基づいており、古典的畳み込みニューラルネットワークと同様の構造を持つ。
MNISTデータセットの数値シミュレーションにより,本モデルの有効性が示された。
論文 参考訳(メタデータ) (2021-07-08T06:47:34Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。