Boosting Deductive Reasoning with Step Signals In RLHF
- URL: http://arxiv.org/abs/2410.09528v2
- Date: Thu, 24 Oct 2024 09:36:53 GMT
- Title: Boosting Deductive Reasoning with Step Signals In RLHF
- Authors: Jialian Li, Yipin Zhang, Wei Shen, Yuzi Yan, Jian Xie, Dong Yan,
- Abstract summary: We have developed an automated method, Multi-step Deduction (MuseD), for deductive reasoning data.
MuseD has allowed us to create training and testing datasets for multi-step reasoning.
Our training data has demonstrated significant improvements in logical capabilities for both in-domain of out-of-domain reasoning tasks.
- Score: 15.441793744822457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Logical reasoning is a crucial task for Large Language Models (LLMs), enabling them to tackle complex problems. Among reasoning tasks, multi-step reasoning poses a particular challenge. Grounded in the theory of formal logic, we have developed an automated method, Multi-step Deduction (MuseD), for deductive reasoning data. MuseD has allowed us to create training and testing datasets for multi-step reasoning. Our generation method enables control over the complexity of the generated instructions, facilitating training and evaluation of models across different difficulty levels. Through RLHF training, our training data has demonstrated significant improvements in logical capabilities for both in-domain of out-of-domain reasoning tasks. Additionally, we have conducted tests to assess the multi-step reasoning abilities of various models.
Related papers
- Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.
We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.
Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - The Role of Deductive and Inductive Reasoning in Large Language Models [35.43513487137371]
Large Language Models (LLMs) have achieved substantial progress in artificial intelligence, particularly in reasoning tasks.
We propose the Deductive and InDuctive(DID) method, which enhances LLM reasoning by dynamically integrating both deductive and inductive reasoning.
Our findings suggest that DID provides a more robust and cognitively aligned framework for reasoning in LLMs.
arXiv Detail & Related papers (2024-10-03T18:30:47Z) - Enhancing Logical Reasoning in Large Language Models through Graph-based Synthetic Data [53.433309883370974]
This work explores the potential and limitations of using graph-based synthetic reasoning data as training signals to enhance Large Language Models' reasoning capabilities.
Our experiments, conducted on two established natural language reasoning tasks, demonstrate that supervised fine-tuning with synthetic graph-based reasoning data effectively enhances LLMs' reasoning performance without compromising their effectiveness on other standard evaluation benchmarks.
arXiv Detail & Related papers (2024-09-19T03:39:09Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - Learning Planning-based Reasoning by Trajectories Collection and Process Reward Synthesizing [61.98556945939045]
We propose a framework to learn planning-based reasoning through Direct Preference Optimization (DPO) on collected trajectories.
Our results on challenging logical reasoning benchmarks demonstrate the effectiveness of our learning framework.
arXiv Detail & Related papers (2024-02-01T15:18:33Z) - Deductive Beam Search: Decoding Deducible Rationale for Chain-of-Thought Reasoning [10.86233584217013]
Previous methods fail to address reasoning errors in intermediate steps, leading to accumulative errors.
We propose Deductive Beam Search (DBS), which seamlessly integrates chain-of-thought reasoning with step-wise beam search for Large Language Models.
Our approach deploys a verifier, verifying the deducibility of a reasoning step and its premises, thus alleviating the error accumulation.
arXiv Detail & Related papers (2024-01-31T09:16:35Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - Disentangling Reasoning Capabilities from Language Models with
Compositional Reasoning Transformers [72.04044221898059]
ReasonFormer is a unified reasoning framework for mirroring the modular and compositional reasoning process of humans.
The representation module (automatic thinking) and reasoning modules (controlled thinking) are disentangled to capture different levels of cognition.
The unified reasoning framework solves multiple tasks with a single model,and is trained and inferred in an end-to-end manner.
arXiv Detail & Related papers (2022-10-20T13:39:55Z) - Faithful Reasoning Using Large Language Models [12.132449274592668]
We show how LMs can be made to perform faithful multi-step reasoning via a process whose causal structure mirrors the underlying logical structure of the problem.
Our approach works by chaining together reasoning steps, where each step results from calls to two fine-tuned LMs.
We demonstrate the effectiveness of our model on multi-step logical deduction and scientific question-answering, showing that it outperforms baselines on final answer accuracy.
arXiv Detail & Related papers (2022-08-30T13:44:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.