論文の概要: Preserving Old Memories in Vivid Detail: Human-Interactive Photo Restoration Framework
- arxiv url: http://arxiv.org/abs/2410.09529v1
- Date: Sat, 12 Oct 2024 13:23:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 13:55:04.910658
- Title: Preserving Old Memories in Vivid Detail: Human-Interactive Photo Restoration Framework
- Title(参考訳): 鮮明な細部における古い記憶の保存:人間と対話した写真復元フレームワーク
- Authors: Seung-Yeon Back, Geonho Son, Dahye Jeong, Eunil Park, Simon S. Woo,
- Abstract要約: 写真修復は結果の質を向上させることができるが、コストと修復に要する時間の観点からすると、しばしば高い価格で提供される。
本稿では,複数のステージから構成されるAIベースの写真復元フレームワークについて述べる。
評価用データセットが公開されていないため,新しい写真復元データセットを提案する。
- 参考スコア(独自算出の注目度): 19.213916633152625
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Photo restoration technology enables preserving visual memories in photographs. However, physical prints are vulnerable to various forms of deterioration, ranging from physical damage to loss of image quality, etc. While restoration by human experts can improve the quality of outcomes, it often comes at a high price in terms of cost and time for restoration. In this work, we present the AI-based photo restoration framework composed of multiple stages, where each stage is tailored to enhance and restore specific types of photo damage, accelerating and automating the photo restoration process. By integrating these techniques into a unified architecture, our framework aims to offer a one-stop solution for restoring old and deteriorated photographs. Furthermore, we present a novel old photo restoration dataset because we lack a publicly available dataset for our evaluation.
- Abstract(参考訳): 写真復元技術は、写真中の視覚記憶の保存を可能にする。
しかし、物理的印刷物は、物理的損傷から画質の喪失など、様々な種類の劣化に対して脆弱である。
人間の専門家による修復は成果の質を向上させることができるが、コストと回復の時間の観点から、しばしば高い価格で得られる。
本稿では,複数のステージで構成されたAIベースの写真復元フレームワークを提案する。各ステージは,特定のタイプの写真損傷を向上・修復し,写真の復元プロセスの高速化・自動化を行う。
これらの手法を統一アーキテクチャに組み込むことで、古い写真や劣化画像の復元のためのワンストップソリューションを提供することを目的としている。
さらに,評価用データセットが公開されていないため,新たな古写真復元データセットを提案する。
関連論文リスト
- Overcoming False Illusions in Real-World Face Restoration with Multi-Modal Guided Diffusion Model [55.46927355649013]
本稿では,新しいマルチモーダル・リアル・ワールド・フェイス・リカバリ技術を紹介する。
MGFRは偽の顔の特徴とアイデンティティの生成を緩和することができる。
5000のアイデンティティにまたがる23,000以上の高解像度の顔画像からなるReface-HQデータセットを提案する。
論文 参考訳(メタデータ) (2024-10-05T13:46:56Z) - Review Learning: Advancing All-in-One Ultra-High-Definition Image Restoration Training Method [7.487270862599671]
本稿では,bfReview Learning という一般画像復元モデルの学習パラダイムを提案する。
このアプローチは、いくつかの劣化したデータセット上のイメージ復元モデルのシーケンシャルなトレーニングと、レビューメカニズムの組み合わせから始まります。
コンシューマグレードのGPU上で4K解像度で画像の劣化を効率的に推論できる軽量な全目的画像復元ネットワークを設計する。
論文 参考訳(メタデータ) (2024-08-13T08:08:45Z) - InstructIR: High-Quality Image Restoration Following Human Instructions [61.1546287323136]
本稿では,人間の手書きによる画像復元モデルを導出する手法を提案する。
InstructIRという手法は、いくつかの修復作業において最先端の結果を得る。
論文 参考訳(メタデータ) (2024-01-29T18:53:33Z) - Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild [57.06779516541574]
SUPIR (Scaling-UP Image Restoration) は、生成前処理とモデルスケールアップのパワーを利用する、画期的な画像復元手法である。
モデルトレーニングのための2000万の高解像度高画質画像からなるデータセットを収集し、それぞれに記述的テキストアノテーションを付加する。
論文 参考訳(メタデータ) (2024-01-24T17:58:07Z) - SPIRE: Semantic Prompt-Driven Image Restoration [66.26165625929747]
セマンティック・復元型画像復元フレームワークであるSPIREを開発した。
本手法は,復元強度の量的仕様を言語ベースで記述することで,より詳細な指導を支援する最初のフレームワークである。
本実験は, SPIREの修復性能が, 現状と比較して優れていることを示すものである。
論文 参考訳(メタデータ) (2023-12-18T17:02:30Z) - All-in-one Multi-degradation Image Restoration Network via Hierarchical
Degradation Representation [47.00239809958627]
我々は新しいオールインワン・マルチデグレーション画像復元ネットワーク(AMIRNet)を提案する。
AMIRNetは、クラスタリングによって木構造を段階的に構築することで、未知の劣化画像の劣化表現を学習する。
この木構造表現は、様々な歪みの一貫性と不一致を明示的に反映しており、画像復元の具体的な手がかりとなっている。
論文 参考訳(メタデータ) (2023-08-06T04:51:41Z) - PromptIR: Prompting for All-in-One Blind Image Restoration [64.02374293256001]
我々は、オールインワン画像復元のためのプロンプトIR(PromptIR)を提案する。
本手法では, 劣化特異的情報をエンコードするプロンプトを用いて, 復元ネットワークを動的に案内する。
PromptIRは、軽量なプロンプトがほとんどない汎用的で効率的なプラグインモジュールを提供する。
論文 参考訳(メタデータ) (2023-06-22T17:59:52Z) - Pik-Fix: Restoring and Colorizing Old Photo [24.366910102387344]
古い写真では、存在するがしばしば障害のある視覚記憶を復元し、塗り替えることは、興味深いが未解決の研究トピックである。
しかし、古い写真の大規模なデータセットが欠如しているため、この修復作業に対処するのが非常に難しい。
ここでは、古い画像や劣化画像の修復とカラー化を両立できる、新しい参照ベースのエンドツーエンド学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-04T05:46:43Z) - ROMNet: Renovate the Old Memories [25.41639794384076]
本稿では、劣化したレガシー画像の修復とカラー化を共同で行うための、新しい参照ベースのエンドツーエンド学習フレームワークを提案する。
また、私たちの知る限りでは、古い写真復元モデルを評価するために、ペア化された真実を持つ、最初の公開と現実世界の古い写真データセットも作成しています。
論文 参考訳(メタデータ) (2022-02-05T17:48:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。