論文の概要: Are You Human? An Adversarial Benchmark to Expose LLMs
- arxiv url: http://arxiv.org/abs/2410.09569v2
- Date: Fri, 20 Dec 2024 12:25:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:22:20.704467
- Title: Are You Human? An Adversarial Benchmark to Expose LLMs
- Title(参考訳): 人間か? LLMを公開するための逆ベンチマーク
- Authors: Gilad Gressel, Rahul Pankajakshan, Yisroel Mirsky,
- Abstract要約: LLM(Large Language Models)は、会話中に人間を偽装する警告機能を実証している。
LLMインポスタをリアルタイムに公開するための課題として設計されたテキストベースのプロンプトを評価する。
- 参考スコア(独自算出の注目度): 2.6528263069045126
- License:
- Abstract: Large Language Models (LLMs) have demonstrated an alarming ability to impersonate humans in conversation, raising concerns about their potential misuse in scams and deception. Humans have a right to know if they are conversing to an LLM. We evaluate text-based prompts designed as challenges to expose LLM imposters in real-time. To this end we compile and release an open-source benchmark dataset that includes 'implicit challenges' that exploit an LLM's instruction-following mechanism to cause role deviation, and 'exlicit challenges' that test an LLM's ability to perform simple tasks typically easy for humans but difficult for LLMs. Our evaluation of 9 leading models from the LMSYS leaderboard revealed that explicit challenges successfully detected LLMs in 78.4% of cases, while implicit challenges were effective in 22.9% of instances. User studies validate the real-world applicability of our methods, with humans outperforming LLMs on explicit challenges (78% vs 22% success rate). Our framework unexpectedly revealed that many study participants were using LLMs to complete tasks, demonstrating its effectiveness in detecting both AI impostors and human misuse of AI tools. This work addresses the critical need for reliable, real-time LLM detection methods in high-stakes conversations.
- Abstract(参考訳): LLM(Large Language Models)は、会話中に人間を偽装する警告能力を示し、詐欺や詐欺の潜在的な誤用に対する懸念を提起している。
人間には、LLMと会話しているかどうかを知る権利がある。
LLMインポスタをリアルタイムに公開するための課題として設計されたテキストベースのプロンプトを評価する。
この目的のために、私たちは、LLMの命令フォロー機構を利用して役割の逸脱を引き起こす'単純なチャレンジ'と、LLMの単純なタスクを実行する能力をテストする'明示的なチャレンジ'を含む、オープンソースのベンチマークデータセットをコンパイルしてリリースしました。
LMSYSのリーダーボードから9つの主要なモデルを評価すると、78.4%のケースにおいて明示的な課題がLLMの検出に成功し、22.9%のケースでは暗黙的な課題が有効であることが判明した。
ユーザスタディは、我々の方法の現実的な適用性を評価し、人間は明示的な課題(成功率の78%対22%)でLLMを上回ります。
我々のフレームワークは、多くの研究参加者がLLMを使ってタスクを完了し、AIインポスタと人間のAIツールの誤用の両方を検出する効果を実証していることを予期せず明らかにした。
本研究は,高精度な会話において,信頼度の高いリアルタイムLLM検出手法の必要性に対処する。
関連論文リスト
- SpecTool: A Benchmark for Characterizing Errors in Tool-Use LLMs [77.79172008184415]
SpecToolは、ツール使用タスクのLLM出力のエラーパターンを特定するための新しいベンチマークである。
もっとも顕著なLCMでも,これらの誤りパターンが出力に現れることを示す。
SPECTOOLの分析と洞察を使って、エラー軽減戦略をガイドすることができる。
論文 参考訳(メタデータ) (2024-11-20T18:56:22Z) - LLM The Genius Paradox: A Linguistic and Math Expert's Struggle with Simple Word-based Counting Problems [28.72485319617863]
LLMは、人間が扱いやすいようないくつかの基本的なタスク、例えば単語トラウベリーの文字数rを数えるのに苦労する。
我々は,高度な数学的およびコーディング推論能力の伝達可能性について,特殊なLCMから単純なカウントタスクまでの測定を行う。
微調整や文脈内学習といった戦略と比較すると、係り受け推論はLLMのタスクをより知覚するのに役立つ最も堅牢で効率的な方法であることがわかる。
論文 参考訳(メタデータ) (2024-10-18T04:17:16Z) - Tokenization Matters! Degrading Large Language Models through Challenging Their Tokenization [12.885866125783618]
大規模言語モデル(LLM)は、特定のクエリに対する不正確な応答を生成する傾向がある。
我々は, LLMのトークン化に挑戦するために, $textbfADT (TokenizerのAdrial dataset)$という逆データセットを構築した。
GPT-4o, Llama-3, Qwen2.5-maxなど, 先進LLMのトークン化に挑戦する上で, 当社のADTは極めて有効であることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-27T11:39:59Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - Adversarial Math Word Problem Generation [6.92510069380188]
大規模言語モデル(LLM)の公平な評価を保証するための新しいパラダイムを提案する。
評価を目的とした質問の構造と難易度を保持する逆例を生成するが,LLMでは解けない。
我々は様々なオープン・クローズド・ソース LLM の実験を行い、定量的かつ質的に、我々の手法が数学の問題解決能力を著しく低下させることを示した。
論文 参考訳(メタデータ) (2024-02-27T22:07:52Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - Large Language Model Is Not a Good Few-shot Information Extractor, but a
Good Reranker for Hard Samples! [43.51393135075126]
大きな言語モデル(LLM)は、様々なタスクにおいて顕著な進歩を遂げています。
その結果,従来のLCMは微調整SLMに比べて性能が劣り,レイテンシが高く,予算要求も増大していることがわかった。
LLMの強度とSLMの強度を結合する適応フィルタ-then-rerankパラダイムを提案する。
論文 参考訳(メタデータ) (2023-03-15T12:20:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。