論文の概要: Use of What-if Scenarios to Help Explain Artificial Intelligence Models for Neonatal Health
- arxiv url: http://arxiv.org/abs/2410.09635v1
- Date: Sat, 12 Oct 2024 20:21:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 09:06:07.725914
- Title: Use of What-if Scenarios to Help Explain Artificial Intelligence Models for Neonatal Health
- Title(参考訳): 新生児健康のための人工知能モデルの構築支援におけるWhat-ifシナリオの利用
- Authors: Abdullah Mamun, Lawrence D. Devoe, Mark I. Evans, David W. Britt, Judith Klein-Seetharaman, Hassan Ghasemzadeh,
- Abstract要約: 部分的リスクの早期検出は、介入によって脳性麻痺などの有害な労働結果の予防または軽減を可能にする。
新生児健康のモデリングと説明のためのAI(Artificial Intelligence)を提案する(AIMEN)。
母性、胎児、産科、産科のリスクファクターから有害な労働結果を予測するだけでなく、その予測の背後にあるモデルの推論も提供する。
- 参考スコア(独自算出の注目度): 6.102406188211489
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early detection of intrapartum risk enables interventions to potentially prevent or mitigate adverse labor outcomes such as cerebral palsy. Currently, there is no accurate automated system to predict such events to assist with clinical decision-making. To fill this gap, we propose "Artificial Intelligence (AI) for Modeling and Explaining Neonatal Health" (AIMEN), a deep learning framework that not only predicts adverse labor outcomes from maternal, fetal, obstetrical, and intrapartum risk factors but also provides the model's reasoning behind the predictions made. The latter can provide insights into what modifications in the input variables of the model could have changed the predicted outcome. We address the challenges of imbalance and small datasets by synthesizing additional training data using Adaptive Synthetic Sampling (ADASYN) and Conditional Tabular Generative Adversarial Networks (CTGAN). AIMEN uses an ensemble of fully-connected neural networks as the backbone for its classification with the data augmentation supported by either ADASYN or CTGAN. AIMEN, supported by CTGAN, outperforms AIMEN supported by ADASYN in classification. AIMEN can predict a high risk for adverse labor outcomes with an average F1 score of 0.784. It also provides counterfactual explanations that can be achieved by changing 2 to 3 attributes on average. Resources available: https://github.com/ab9mamun/AIMEN.
- Abstract(参考訳): 部分的リスクの早期検出は、介入によって脳性麻痺などの有害な労働結果の予防または軽減を可能にする。
現在、そのような事象を予測し、臨床的意思決定を支援するための正確な自動システムはない。
このギャップを埋めるために,母体,胎児,産婦人科,産婦人科の有害な労働結果を予測するだけでなく,モデルが生み出した予測の背後にある理由を提供する深層学習フレームワークである「新生児健康のモデル化と説明のための人工知能(AI)」を提案する。
後者は、モデルの入力変数の変更が予測結果を変えた可能性についての洞察を与えることができる。
本稿では,Adaptive Synthetic Smpling (ADASYN) と Conditional Tabular Generative Adversarial Networks (CTGAN) を用いて追加のトレーニングデータを合成することで,不均衡と小さなデータセットの課題に対処する。
AIMENは、ADASYNまたはCTGANがサポートするデータ拡張と共に、その分類のバックボーンとして、完全に接続されたニューラルネットワークのアンサンブルを使用する。
CTGANがサポートするAIMENは、ADASYNがサポートするAIMENよりも優れている。
AIMENは、平均的なF1スコアが0.784で、有害な労働結果のリスクを予測できる。
また、平均で2から3の属性を変更することで達成できる、反現実的な説明も提供する。
リソース: https://github.com/ab9mamun/AIMEN.com
関連論文リスト
- Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
AIによる薬物発見の大きな課題は、高品質なデータの不足である。
薬物動態の4つの重要なパラメータを同時に予測するPEMAL法を開発した。
実験の結果,PEMALは一般的なグラフニューラルネットワークに比べてデータ需要を著しく低減することがわかった。
論文 参考訳(メタデータ) (2024-04-16T07:42:55Z) - Towards a Transportable Causal Network Model Based on Observational
Healthcare Data [1.333879175460266]
本稿では,選択図,不足グラフ,因果発見,事前知識を1つのグラフィカルモデルに組み合わせた新しい手法を提案する。
このモデルは、患者の2つの異なるコホートからなるデータから学習する。
結果として得られた因果ネットワークモデルは、リスク評価、正確性、説明可能性の観点から専門家臨床医によって検証される。
論文 参考訳(メタデータ) (2023-11-13T13:23:31Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Explainable AI for Malnutrition Risk Prediction from m-Health and
Clinical Data [3.093890460224435]
異種m-healthデータに基づく早期かつ説明可能な栄養失調リスク検出のための新しいAIフレームワークを提案する。
対象非依存および個人化予測を含む広範囲なモデル評価を行った。
また,グローバルモデル記述を抽出するベンチマークXAI法についても検討した。
論文 参考訳(メタデータ) (2023-05-31T08:07:35Z) - An Improved Model Ensembled of Different Hyper-parameter Tuned Machine
Learning Algorithms for Fetal Health Prediction [1.332560004325655]
本研究では,胎児の健康状態を予測するために,Support Vector MachineとExtraTreesのアンサンブルと呼ばれる頑健なアンサンブルモデルを提案する。
提案したETSEモデルは、100%精度、100%リコール、100%F1スコア、99.66%精度で他のモデルより優れていた。
論文 参考訳(メタデータ) (2023-05-26T16:40:44Z) - NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical
Development Patterns of Preterm Infants [73.85768093666582]
我々はNeuroExplainerと呼ばれる説明可能な幾何学的深層ネットワークを提案する。
NeuroExplainerは、早産に伴う幼児の皮質発達パターンの解明に使用される。
論文 参考訳(メタデータ) (2023-01-01T12:48:12Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Algorithmic encoding of protected characteristics and its implications
on disparities across subgroups [17.415882865534638]
機械学習モデルは、患者の人種的アイデンティティと臨床結果の間に望ましくない相関関係を拾うことができる。
これらのバイアスがどのようにコード化され、どのように異なるパフォーマンスを減らしたり、取り除いたりするかについては、ほとんど分かっていない。
論文 参考訳(メタデータ) (2021-10-27T20:30:57Z) - Improvement of a Prediction Model for Heart Failure Survival through
Explainable Artificial Intelligence [0.0]
本研究は、心不全生存予測モデルの説明可能性分析と評価について述べる。
このモデルでは、最高のアンサンブルツリーアルゴリズムを選択できるデータワークフローパイプラインと、最高の機能選択テクニックが採用されている。
本論文の主な貢献は、精度-説明可能性バランスに基づいて、HF生存率の最良の予測モデルを選択するための説明可能性駆動型アプローチである。
論文 参考訳(メタデータ) (2021-08-20T09:03:26Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。