Multimodal Physical Activity Forecasting in Free-Living Clinical Settings: Hunting Opportunities for Just-in-Time Interventions
- URL: http://arxiv.org/abs/2410.09643v1
- Date: Sat, 12 Oct 2024 20:44:00 GMT
- Title: Multimodal Physical Activity Forecasting in Free-Living Clinical Settings: Hunting Opportunities for Just-in-Time Interventions
- Authors: Abdullah Mamun, Krista S. Leonard, Megan E. Petrov, Matthew P. Buman, Hassan Ghasemzadeh,
- Abstract summary: This research aims to develop a lifestyle intervention system, called MoveSense, that forecasts a patient's activity behavior.
We conduct two clinical studies involving 58 prediabetic veterans and 60 patients with obstructive sleep apnea.
- Score: 7.002143951776267
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Objective: This research aims to develop a lifestyle intervention system, called MoveSense, that forecasts a patient's activity behavior to allow for early and personalized interventions in real-world clinical environments. Methods: We conducted two clinical studies involving 58 prediabetic veterans and 60 patients with obstructive sleep apnea to gather multimodal behavioral data using wearable devices. We develop multimodal long short-term memory (LSTM) network models, which are capable of forecasting the number of step counts of a patient up to 24 hours in advance by examining data from activity and engagement modalities. Furthermore, we design goal-based forecasting models to predict whether a person's next-day steps will be over a certain threshold. Results: Multimodal LSTM with early fusion achieves 33% and 37% lower mean absolute errors than linear regression and ARIMA respectively on the prediabetes dataset. LSTM also outperforms linear regression and ARIMA with a margin of 13% and 32% on the sleep dataset. Multimodal forecasting models also perform with 72% and 79% accuracy on the prediabetes dataset and sleep dataset respectively on goal-based forecasting. Conclusion: Our experiments conclude that multimodal LSTM models with early fusion are better than multimodal LSTM with late fusion and unimodal LSTM models and also than ARIMA and linear regression models. Significance: We address an important and challenging task of time-series forecasting in uncontrolled environments. Effective forecasting of a person's physical activity can aid in designing adaptive behavioral interventions to keep the user engaged and adherent to a prescribed routine.
Related papers
- Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Enhancing Uncertain Demand Prediction in Hospitals Using Simple and Advanced Machine Learning [3.9054437595657534]
Using patient care demand data from Rambam Medical Center in Israel, our results show that both proposed models effectively capture hourly variations of patient demand.
It is possible to predict patient care demand with good accuracy (around 4 patients) three days or a week in advance using machine learning.
arXiv Detail & Related papers (2024-04-29T13:05:59Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Multimodal spatiotemporal graph neural networks for improved prediction
of 30-day all-cause hospital readmission [4.609543591101764]
We propose a multimodal, modality-agnostic graph neural network (MM-STGNN) for prediction of 30-day all-cause hospital readmission.
MM-STGNN achieves AU of 0.79 on both primary and external datasets.
For subset populations of patients with heart and vascular disease, our model also outperforms baselines on predicting 30-day readmission.
arXiv Detail & Related papers (2022-04-14T05:50:07Z) - DeepAD: A Robust Deep Learning Model of Alzheimer's Disease Progression
for Real-World Clinical Applications [0.9999629695552196]
We propose a novel multi-task deep learning model to predict Alzheimer's disease progression.
Our model integrates high dimensional MRI features from a 3D convolutional neural network with other data modalities.
arXiv Detail & Related papers (2022-03-17T05:42:00Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Longitudinal modeling of MS patient trajectories improves predictions of
disability progression [2.117653457384462]
This work addresses the task of optimally extracting information from longitudinal patient data in the real-world setting.
We show that with machine learning methods suited for patient trajectories modeling, we can predict disability progression of patients in a two-year horizon.
Compared to the models available in the literature, this work uses the most complete patient history for MS disease progression prediction.
arXiv Detail & Related papers (2020-11-09T20:48:00Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.